Files
ZKFC_ACC/000补偿值计算/.ipynb_checkpoints/Die1数据计算-Copy1-checkpoint.ipynb

3103 lines
2.6 MiB
Plaintext
Raw Normal View History

2025-11-23 20:43:12 +08:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "ad8424f1-4fd8-4f68-9557-f560d5a28e4b",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import sys\n",
"import os\n",
"sys.path.append('..')\n",
"from QX8800SP_DA import *\n",
"plt.rcParams['font.family'] = ['SimHei'] # 用来正常显示中文标签\n",
"plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号\n",
"pd.set_option('display.max_columns', None) #显示所有列,把行显示设置成最大\n",
"pd.set_option('display.max_rows', None) #显示所有行,把列显示设置成最大\n",
"#交互式绘图\n",
"%matplotlib widget"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "ccb60f92-e657-4732-a679-6ca67bfcf201",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"MCX (96, 18)\n",
"MCY (96, 18)\n",
"Angle13 (96, 18)\n",
"M1X (96, 18)\n",
"M1Y (96, 18)\n",
"M3X (96, 18)\n",
"M3Y (96, 18)\n",
"Note (7, 1)\n"
]
}
],
"source": [
"#写入TotalData\n",
"TotalData = pd.read_excel('../Die1AllData.xlsx',sheet_name=None,header=0,index_col = 0)\n",
"for i in TotalData:\n",
" print(i,TotalData[i].shape)"
]
},
{
"cell_type": "markdown",
"id": "8f9078d7",
"metadata": {},
"source": [
"## 对位Mark"
]
},
{
"cell_type": "markdown",
"id": "31b36a67",
"metadata": {},
"source": [
"### 对位MarkX"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "6de0e187",
"metadata": {},
"outputs": [],
"source": [
"AlignMarkX = TotalData['M3X'].dropna(subset='QX8800SP_Index').set_index('QX8800SP_Index').iloc[:,-4:]\n",
"# AlignMarkX"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "3380eb98",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>10.9.1-Die1</th>\n",
" <th>10.10.1-Die1</th>\n",
" <th>10.10.2-Die1</th>\n",
" <th>10.11.1-Die1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>72.000000</td>\n",
" <td>70.000000</td>\n",
" <td>74.000000</td>\n",
" <td>75.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>-2.760417</td>\n",
" <td>-2.452600</td>\n",
" <td>-2.748135</td>\n",
" <td>-2.491933</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>0.283306</td>\n",
" <td>0.309353</td>\n",
" <td>0.290616</td>\n",
" <td>0.299251</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>-3.609000</td>\n",
" <td>-2.994000</td>\n",
" <td>-3.531000</td>\n",
" <td>-3.530000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>-2.923250</td>\n",
" <td>-2.702000</td>\n",
" <td>-2.937250</td>\n",
" <td>-2.642500</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>-2.719500</td>\n",
" <td>-2.431000</td>\n",
" <td>-2.745500</td>\n",
" <td>-2.442000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>-2.593750</td>\n",
" <td>-2.274000</td>\n",
" <td>-2.520000</td>\n",
" <td>-2.297000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>-2.241000</td>\n",
" <td>-1.706000</td>\n",
" <td>-2.178000</td>\n",
" <td>-1.904000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>range</th>\n",
" <td>1.368000</td>\n",
" <td>1.288000</td>\n",
" <td>1.353000</td>\n",
" <td>1.626000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3sigma</th>\n",
" <td>0.849917</td>\n",
" <td>0.928060</td>\n",
" <td>0.871849</td>\n",
" <td>0.897752</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 10.9.1-Die1 10.10.1-Die1 10.10.2-Die1 10.11.1-Die1\n",
"count 72.000000 70.000000 74.000000 75.000000\n",
"mean -2.760417 -2.452600 -2.748135 -2.491933\n",
"std 0.283306 0.309353 0.290616 0.299251\n",
"min -3.609000 -2.994000 -3.531000 -3.530000\n",
"25% -2.923250 -2.702000 -2.937250 -2.642500\n",
"50% -2.719500 -2.431000 -2.745500 -2.442000\n",
"75% -2.593750 -2.274000 -2.520000 -2.297000\n",
"max -2.241000 -1.706000 -2.178000 -1.904000\n",
"range 1.368000 1.288000 1.353000 1.626000\n",
"3sigma 0.849917 0.928060 0.871849 0.897752"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"AXdescibe = describe_3s(AlignMarkX)\n",
"AXdescibe"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "5355743f",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "179b886277fc49639426590de1529db3",
"version_major": 2,
"version_minor": 0
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAImCAYAAACrXu7BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC6qUlEQVR4nOzdd3gU1RoG8HdmtmZ3Uwm9SQsd6UWRDoogXBVFRUERQSwoIAqiKHhFRcWCiCgKCNcCIiiiIvYCUlVAegmEnrrZ3ub+sclsNtmEZJNsQnh/z8ND5kw5ZzaTnfnmNEGWZRlEREREREQRIFZ0AYiIiIiI6PLBAISIiIiIiCKGAQgREREREUUMAxAiIiIiIooYBiBERERERBQxDECIiIiIiChiGIAQEREREVHEMAAhIiIiIqKIYQBCREREREQRwwCEiIiIiIgihgEIERFhwoQJWLlyZaHrLRZLidKJiIgKwwCEiIiQnJyM1NTUkOvS09PRu3dvrFixIih9xowZmDBhQiSKR0REVQgDECKiEvjzzz+RlJSEpKQktG/fHjfffDNWrVpV5LalsWrVKtx5551h7bt48WIsW7YMK1asUP598sknIbfV6/UQxdC3hJ9++gnZ2dlo3rx5UPrw4cOxbds2bNiwIeR+b775JpKSkvDcc88pabNnz0ZSUhLefPPNsM4plKSkJPz5559ldrz8fvrpJyQlJWHbtm1K2ooVK9CyZUucPHmy3PIlIqqqVBVdACKiS9HLL7+M2NhYrF27FjNnzsTZs2fx0EMPBW3TqlUrrF69Ouw8tm/fjjlz5qBdu3Zh7X/gwAFoNBolsDhy5AisViuGDRsGlUoFlargLcDtdsPn80Gr1Sppq1atwhVXXIFOnTrh8OHD8Pl8kCQJCQkJGDp0KARBwJEjRwAAsixDq9WiXr16yv779+8PKtOlpnfv3mjZsiWWL1+Ozp07Q5ZlfPjhhxgyZEjQeRIRUfEwACEiCkOTJk3QokUL9OzZE06nE++88w5uv/12JCQkKNsYjUa0adMmrOP/+OOPmDx5Mho3bhx2GV955ZWg5RdeeAGpqakYN24ctm7dWmD7vXv3YsGCBRg8eDDmz5+vpO3cuRP33nsvAGDatGk4evRoUPDy008/KT/7fD5cffXVeOONN5S0vEHHpRiAAMD48eMxefJknDp1CocOHUJycjIWLlxY0cUiIrokMQAhIiqlW2+9Fd999x1+/fVXDB8+vEyOuXXrVrz22mv4559/QgYLxbFq1SpUr14dvXr1AuAPJgYOHIiBAwdCpVJBp9Mp244aNQo9e/bE2LFjIQiCkv7WW28BAAwGAwBgzZo1JSpD27ZtsWfPHpw+fRqyLMNqtYYdlFWkgQMHokGDBli5ciX279+PgQMHlio4JCK6nLEPCBFRKeX2jchthpSrqD4g+/btw1133YW2bduiX79+WLp0adD6xx57TAkcwpWZmYlJkybh77//hsViwa5du9C5c2ckJibi4MGDMBgMyj9BEKBWqxETE4Po6GgAwObNm/H9998rywDg8Xjw1ltvYefOnUF5zZ49GzfeeCPMZnNQuk6nQ/369XHgwAHs378f9erVg16vD9pm6dKl6NevH9q1a4dhw4bhjz/+CFr/xBNP4IknnsC5c+cwZcoUdO3aFSdOnAh5zqmpqejfvz8eeeQR+Hy+sD+7/ERRxPjx4/HRRx/hjz/+wPjx48vs2ERElxsGIEREpRQTEwMAyMrKKtb2GRkZGDNmDGJjY/Hee+/h7rvvxksvvRTUmb2wDuElMW7cOIwdOxbjx4/HsmXLEBcXh+bNm2PPnj245557imwOZbFYMGPGDAwePDio87lKpcK3336LTz/9NGj7f/75B1qtNihYyZWUlIT9+/fjwIEDaNasWdC6L7/8EnPnzsXtt9+OJUuWoGPHjnj44YcLDO+bmZmJ2267DYIg4KGHHkJcXFzIMo8bNw5XXHEF5s2bV+AzTEtLQ3JyMjIyMgr/0IowZMgQ6HQ6dOzYEa1atQrrGERExACEiKjU8jZZKo4VK1ZAFEW88sor6NKlC0aNGoV+/fph3bp1ZV62hx56CL1798Ybb7yBIUOGAPA3i+rVq5fSzyMUo9GIQYMG4cknnyywbtiwYfjuu+/gdDoBAC6XCwcOHED//v1DHqtZs2ZKDUj+GqEaNWpg3rx5GDt2LDp16oQRI0YgOzsbR48eDdruxx9/xJ133omXX34Zo0aNgslkClrvcrkwceJEeL1evPnmm1Cr1QXKMW/ePAwcOBBLliwp9LyLcvDgQaSnp2Pfvn3IzMwM6xhERMQAhIio1HKbHeXWhFxM7oNs69atlSF9N27ciOPHj5dL+QYPHgwAOHbsmJI2duxY/Pjjj9i7d2+h+z3xxBOoVq1agfShQ4fCZrPht99+A+Af5crlcuGaa64JeZxmzZoVWgPSpUsXxMbGYtasWbjhhhtw8803AwDsdnvQdk2aNMHo0aMLLetzzz2Ho0ePIiUlpdwmR1y4cCG6desGo9GI5cuXl0seRESXAwYgRESldPDgQQD+h+Tiatu2LdauXRv07/333y/zsrlcLrzwwgu48cYbsW3bNqWZV+fOnTFhwgTEx8eX+JjVq1dHixYt8PPPPwMAduzYgerVq6Np06Yht2/WrBmOHTuG48ePFwhA5s2bh0mTJkGv12PChAn44YcfQh6jTZs2RTZLEwQBa9euRePGjfH666+H3OaFF17AgQMHMHXq1OKcZpBDhw5h06ZNuO+++3DnnXdixYoVnAWeiChMDECIiErp008/hVarLXan8aZNm+LMmTNo3LgxWrRogRYtWuDYsWP4+OOPy7xszz//PHw+H2bNmoWpU6fi+eefR0pKCgDg0UcfRa1atcI67lVXXYVff/0VgL+z/VVXXVXotvXr14der4dOp0ODBg2C1n366acYM2YMnnjiCQwePDjsh/qnnnoK1apVw9SpU7F69eqguUdynT9/HkeOHEF6enqJj79o0SI0bdoUV111FUaOHAmPx4OVK1eGVVYiossdAxAiojAcPnwYv//+O6ZNm4YNGzbgscceQ2xsbLH2HTVqFFwuFx599FFs3rwZ69evx7PPPlsmHc9zybKM5557DuvXr8ebb74JnU6HW2+9FY0bN8b//ve/sI7pdrvh8XgAALfddhuWL18Ol8uFP//8E926dQvaLu8IVKIoonHjxmjSpEmBc4yLi8PmzZuxbds2JRgBAK/XW6Ky5c5L0rVrV1x11VWYO3dugW1effVVDB48uMQ1TcnJyfj6669xzz33AABMJhNGjBiBpUuXFmgqRkREF8cAhIgoDFOnTsUDDzyAkydP4q233sKdd95Z7H3j4+OxdOlSZGdnY/z48XjxxRdx8803Y9q0aWVWvtdffx2fffaZ8uYe8AcCb7zxBiZPnqxsd+LECWzfvh2nT59W5vrIz+v1QpZlrF69Gq1atUJSUhL69OmD/v37o02bNrDZbHj88ceV/iytW7fGyZMng47RrFmzAs2vAH+zKKfTiXHjxmHlypWYMmUK4uLisGPHjrDPferUqdi6dSs2bdoU9jHyWrRoEeLj43H99dcraaNHj4bZbMYnn3xSJnkQEV1OBFmW5YouBBERlS273Y6jR49edLjY6dOnY82aNWjWrBneeust1K9fv8A2t9xyC6655hqMHDkSqampIUeYysvpdKJx48bQarWlOgciIqqaGIAQEV3G0tPTIcsyEhISCt3muuuuQ//+/TFlypQIloyIiKoqBiBERERERBQx7ANCREREREQRwwCEiIiIiIgihgEIERERERFFDAMQIiIiIiKKGAYgREREREQUMQxAiIiIiIgoYhiAEBERERFRxDAAISIiIiKiiGEAQkREREREEcMAhIiIiIiIIoYBCBERERERRQwDECIiIiIiihgGIEREREREFDEMQIiIiIiIKGIYgBARERERUcQwACEiIiIioohhAEJERERERBHDAISIiIiIiCKGAQgREVUqTqcT69evr+hiEBFROWEAQkRE5eLFF19Ex44dYbFYlLSHH34YAwcOhNfrLXS/5cuXw2w
"text/html": [
"\n",
" <div style=\"display: inline-block;\">\n",
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
" Figure\n",
" </div>\n",
" <img src='
" </div>\n",
" "
],
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(2,1)\n",
"ax[0].plot([i+1 for i in range(len(AlignMarkX.columns))],AXdescibe.loc['mean'],linestyle = '-.',marker = 'o',color='w')\n",
"AlignMarkX.boxplot(ax=ax[0])\n",
"ax[0].axhline(0,c='orange',ls='-.',label=r'Mean_X:$0um\\pm0.10um$')\n",
"for i in range(len(AlignMarkX.columns)):\n",
" ax[0].annotate(round(AXdescibe.loc['mean'][i],3), \n",
" xy=(i+1,AXdescibe.loc['mean'][i]),\n",
" xytext=(i+0.95,AXdescibe.loc['mean'][i]+0.05),\n",
" color=\"r\")\n",
"ax[0].legend()\n",
"ax[0].set_title('mean_X/Day')\n",
"ax[1].plot([i for i in AlignMarkX.columns],AXdescibe.loc['3sigma'],marker = 'o')\n",
"ax[1].axhline(0.8,c='orange',ls='-.',label=r'3sigma_X:$<0.800um$')\n",
"ax[1].axhline(0.57,c='green',ls='-.',label=r'3sigma_X:$<0.570um$')\n",
"for i in range(len(AlignMarkX.columns)):\n",
" ax[1].annotate(round(AXdescibe.loc['3sigma'][i],3), \n",
" xy=(i,AXdescibe.loc['3sigma'][i]),\n",
" xytext=(i,AXdescibe.loc['3sigma'][i]),\n",
" color=\"r\")\n",
"ax[1].legend() \n",
"ax[1].set_title('3sigam_X/Day')\n",
"# ax[2].plot([i for i in AlignMarkX.columns],AXdescibe.loc['range'],marker = 'o')\n",
"# for i in range(len(AlignMarkX.columns)):\n",
"# ax[2].annotate(round(AXdescibe.loc['range'][i],3), \n",
"# xy=(i,AXdescibe.loc['range'][i]),\n",
"# xytext=(i,AXdescibe.loc['range'][i]),\n",
"# color=\"r\")\n",
"# ax[2].set_title('Range_X/Day')\n",
"plt.suptitle('Die1 对位MarkX')\n",
"fig.tight_layout()\n",
"plt.savefig('Die1/Die1对位MarkX.jpg',dpi=200)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "64f88c9a",
"metadata": {},
"source": [
"### 对位MarkY"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "9e294f7b-3ea3-4a33-99b5-92e22bd1a827",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>10.9.1-Die1</th>\n",
" <th>10.10.1-Die1</th>\n",
" <th>10.10.2-Die1</th>\n",
" <th>10.11.1-Die1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>72.000000</td>\n",
" <td>70.000000</td>\n",
" <td>74.000000</td>\n",
" <td>75.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>-1.835278</td>\n",
" <td>-2.167943</td>\n",
" <td>-2.189946</td>\n",
" <td>-1.754587</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>0.257746</td>\n",
" <td>0.281506</td>\n",
" <td>0.339576</td>\n",
" <td>0.226120</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>-2.620000</td>\n",
" <td>-2.822000</td>\n",
" <td>-3.065000</td>\n",
" <td>-2.488000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>-1.987750</td>\n",
" <td>-2.331250</td>\n",
" <td>-2.413000</td>\n",
" <td>-1.872500</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>-1.811500</td>\n",
" <td>-2.194000</td>\n",
" <td>-2.195000</td>\n",
" <td>-1.776000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>-1.671250</td>\n",
" <td>-1.995250</td>\n",
" <td>-2.016000</td>\n",
" <td>-1.632000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>-1.252000</td>\n",
" <td>-1.570000</td>\n",
" <td>-1.012000</td>\n",
" <td>-1.079000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>range</th>\n",
" <td>1.368000</td>\n",
" <td>1.252000</td>\n",
" <td>2.053000</td>\n",
" <td>1.409000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3sigma</th>\n",
" <td>0.773239</td>\n",
" <td>0.844518</td>\n",
" <td>1.018729</td>\n",
" <td>0.678360</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 10.9.1-Die1 10.10.1-Die1 10.10.2-Die1 10.11.1-Die1\n",
"count 72.000000 70.000000 74.000000 75.000000\n",
"mean -1.835278 -2.167943 -2.189946 -1.754587\n",
"std 0.257746 0.281506 0.339576 0.226120\n",
"min -2.620000 -2.822000 -3.065000 -2.488000\n",
"25% -1.987750 -2.331250 -2.413000 -1.872500\n",
"50% -1.811500 -2.194000 -2.195000 -1.776000\n",
"75% -1.671250 -1.995250 -2.016000 -1.632000\n",
"max -1.252000 -1.570000 -1.012000 -1.079000\n",
"range 1.368000 1.252000 2.053000 1.409000\n",
"3sigma 0.773239 0.844518 1.018729 0.678360"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"AlignMarkY = TotalData['M3Y'].dropna(subset='QX8800SP_Index').set_index('QX8800SP_Index').iloc[:,-4:]\n",
"AYdescibe = describe_3s(AlignMarkY)\n",
"AYdescibe"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "81162e4f-1ed2-4365-9e55-2a0177174f18",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "504d610964064527aa33de7c09d08993",
"version_major": 2,
"version_minor": 0
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAImCAYAAACrXu7BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADLtElEQVR4nOzdd3hTVR8H8G9W071LoZQWOtmjUDYyZZYhgiKgqIAgKCAgCIKAKKDIFgeIMhUEEZChqIjKK3vPLqCsUrrbpDPJff8ITZvupmnS8f08Dw/cdc654Sb3/u5ZIkEQBBAREREREZmA2NwFICIiIiKimoMBCBERERERmQwDECIiIiIiMhkGIEREREREZDIMQIiIiIiIyGQYgBARERERkckwACEiIiIiIpNhAEJERERERCbDAISIiIiIiEyGAQgREREREZkMAxAiIsLEiROxY8eOIrcrFIoyrSciIioKAxAiIkJUVBTi4uIK3ZaQkIBu3bph+/bteuvnzp2LiRMnmqJ4RERUjTAAISIqg9OnTyMwMBCBgYFo1aoVhg0bht27dxe7b3ns3r0bL7/8skHHbtiwAVu2bMH27dt1f3bt2lXovlZWVhCLC78lHD9+HKmpqWjYsKHe+iFDhuDs2bM4fPhwocetW7cOgYGB+Oijj3TrPvzwQwQGBmLdunUGnVNhAgMDcfr0aaOll9+iRYvQtWtXqFQq3br09HS0bdvWqOdBRFRTSM1dACKiquizzz6Do6Mj9u3bh3nz5uHx48d4++239fZp0qQJ9uzZY3Ae586dw+LFi9GiRQuDjg8NDYWFhYUusIiMjIRSqcTgwYMhlUohlRa8BWRnZ0Oj0UAul+vW7d69Gw0aNECbNm0QEREBjUYDiUQCFxcXDBw4ECKRCJGRkQAAQRAgl8tRr1493fG3bt3SK1NV8/rrr2PXrl347bffMGDAAADAzz//jKysLIwaNcrMpSMiqnoYgBARGcDPzw+NGjVCly5dkJmZia+//hojR46Ei4uLbh9bW1s0a9bMoPT/+usvTJ8+Hb6+vgaXccWKFXrLy5YtQ1xcHMaPH48zZ84U2P/69ev4/PPP0b9/f6xatUq37sKFCxg3bhwAYNasWbh9+7Ze8HL8+HHdvzUaDTp37oy1a9fq1uUNOqpiAFKvXj307dsXW7ZswYABAyAIArZt24ahQ4fC2dnZ3MUjIqpyGIAQEZXTiy++iN9//x3//vsvhgwZYpQ0z5w5g9WrV+PKlSuFBgulsXv3btSqVQtdu3YFoA0mevfujd69e0MqlcLS0lK37+jRo9GlSxeMHTsWIpFIt379+vUAABsbGwDA3r17y1SG5s2b49q1a3j06BEEQYBSqTQ4KDOn8ePHY8iQIbh48SJSUlIQFRWFDRs2mLtYRERVEvuAEBGVU07fiJxmSDmK6wNy8+ZNvPLKK2jevDl69uyJzZs3621/9913dYGDoZKSkjB16lRcvnwZCoUCFy9eRHBwMNzc3BAWFgYbGxvdH5FIBJlMBgcHB9jb2wMATp48iT///FO3DAAqlQrr16/HhQsX9PL68MMPMXToUKSkpOitt7S0hJeXF0JDQ3Hr1i3Uq1cPVlZWevts3rwZPXv2RIsWLTB48GD8999/etvfe+89vPfee4iJicGMGTPQrl073Lt3r9BzjouLQ69evTBt2jRoNBqDP7v8GjVqhM6dO2PLli3YsmUL+vbtq9fMjIiISo81IERE5eTg4AAASE5OLtX+iYmJePXVV9GuXTt88803CAsLw5IlS2BjY4Phw4cDQJEdwsti/PjxyMjIwIQJE/Dyyy/DyckJDRs2xJUrV/D6669j3759RQZICoUCc+fORf/+/fVGx5JKpfjtt99w//59BAUF6dZfuXIFcrlcL1jJERgYiFu3bkEQBAQEBOh9Tr/88guWLl2KWbNmoUWLFjh8+DCmTJmC48ePw9bWVrdfUlISXnrpJQQFBeHtt9+Gk5NToWUeP348GjRogOXLlxf4DOPj46FQKGBvb1/o8SUZN24cXn/9dQiCUOaaICIiysUaECKicsrbZKk0tm/fDrFYjBUrVqBt27YYPXo0evbsif379xu9bG+//Ta6deuGtWvXIiQkBIC2WVTXrl11/TwKY2triz59+uD9998vsG3w4MH4/fffkZmZCQDIyspCaGgoevXqVWhaAQEBuhqQ/AGPu7s7li9fjrFjx6JNmzYYPnw4UlNTcfv2bb39/vrrL7z88sv47LPPMHr0aNjZ2eltz8rKwqRJk6BWq7Fu3TrIZLIC5Vi+fDl69+6NTZs2FXnexenQoQN8fX3RqlUrNG7c2KA0iIiIAQgRUbnlNDvKqQkpSVhYGBISEtC0aVPdkL5Hjx7F3bt3K6R8/fv3BwDcuXNHt27s2LH466+/cP369SKPe++99+Dq6lpg/cCBA5GWloYTJ04A0I5ylZWVhWeeeabQdAICAnDr1i2EhoYiICBAb1vbtm3h6OiIBQsWYNCgQRg2bBgA7TC3efn5+WHMmDFFlvWjjz7C7du38eDBgwqdHNHJycmg2hMiIsrFAISIqJzCwsIAaB+SS6t58+bYt2+f3p9vv/3W6GXLysrCsmXLMHToUJw9e1Y3Z0lwcDAmTpxo0ChOtWrVQqNGjfD3338DAM6fP49atWrB39+/0P0DAgJw584d3L17t0AAsnz5ckydOhVWVlaYOHEijh07VmgazZo1K7ZZmkgkwr59++Dr64s1a9YUus+yZcsQGhqKmTNnluY0iYiogjAAISIqpx9//BFyubzUncb9/f0RHR0NX19fNGrUCI0aNcKdO3ewc+dOo5dtyZIl0Gg0WLBgAWbOnIklS5bgwYMHAIB33nkHderUMSjdTp064d9//wWg7WzfqVOnIvf18vKClZUVLC0t4e3trbftxx9/xKuvvor33nsP/fv3N7j2Yv78+XB1dcXMmTOxZ88evblHcjx58gSRkZFISEgwKA8iIjIOBiBERAaIiIjA//73P8yaNQuHDx/Gu+++C0dHx1IdO3r0aGRlZeGdd97ByZMncfDgQSxatMgoHc9zCIKAjz76CAcPHsS6detgaWmJF198Eb6+vvj+++8NSjM7O1s3G/hLL72ErVu3IisrC6dPn0b79u319ss7ApVYLIavry/8/PwKnKOTkxNOnjyJs2fP6oIRAFCr1WUqW868JO3atUOnTp2wdOnSAvusXLkS/fv3r5CaJiIiKj2OgkVEZICZM2fCysoKjRo1wvr164vsgF0YZ2dnbN68GcuWLcOECRPg4OCAYcOGYerUqUYr35o1a/DTTz9h48aNuqZRYrEYa9euRa1atXT73bt3D0+ePMGjR490c33kp1arIQgC9uzZg4ULFxa6z+zZszF79mzd8tGjR/W25296lWPZsmVYvHgxxo8fD29vb8yYMQPLli3D+fPn0bFjx7Kcss7MmTPx3HPP4Y8//ijT/wsREZmGSBAEwdyFICIi40pPT8ft27fRpEmTYvebM2cO9u7di4CAAKxfvx5eXl4F9nnhhRfwzDPPYMSIEYiLiyt0hKm8MjMz4evrC7lcXq5zICKi6okBCBFRDZaQkABBEODi4lLkPv369UOvXr0wY8YME5aMiIiqKwYgRERERERkMuyETkREREREJsMAhIiIiIiITIYBCBERERERmQwDECIiIiIiMhkGIEREREREZDIMQIiIiIiIyGQYgBARERERkckwACEiIiIiIpNhAEJERERERCbDAISIiIiIiEyGAQgREREREZkMAxAiIiIiIjIZBiBERERERGQyDECIiIiIiMhkGIAQEREREZHJMAAhIiIiIiKTYQBCREREREQmwwCEiIiIiIhMhgEIERFVKpmZmTh48KC5i0FERBWEAQgRERmdIAgYOHAgpk+frrf+0qVLCAwMxOnTp4s8duvWrUhJSQEA9OjRA4GBgWjSpAl69OiBxYsXIyEhoULLTkREFYsBCBERGZ1IJMLYsWPx22+/4fHjx7r1mzdvRrNmzdCuXbtCj0tKSsLRo0fxwgsv6NaFhIRg27ZtGDVqFH7++WeMHj0aGRkZFX4ORERUMRi
"text/html": [
"\n",
" <div style=\"display: inline-block;\">\n",
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
" Figure\n",
" </div>\n",
" <img src='
" </div>\n",
" "
],
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(2,1)\n",
"ax[0].plot([i+1 for i in range(len(AlignMarkY.columns))],AYdescibe.loc['mean'],linestyle = '-.',marker = 'o',color='w')\n",
"AlignMarkY.boxplot(ax=ax[0])\n",
"ax[0].axhline(0,c='orange',ls='-.',label=r'Mean_Y:$0um\\pm0.10um$')\n",
"for i in range(len(AlignMarkY.columns)):\n",
" ax[0].annotate(round(AYdescibe.loc['mean'][i],2), \n",
" xy=(i+1,AYdescibe.loc['mean'][i]),\n",
" xytext=(i+0.95,AYdescibe.loc['mean'][i]+0.05),\n",
" color=\"r\")\n",
"ax[0].legend()\n",
"ax[0].set_title('mean_Y/Day')\n",
"ax[1].plot([i for i in AlignMarkY.columns],AYdescibe.loc['3sigma'],marker = 'o')\n",
"ax[1].axhline(0.8,c='orange',ls='-.',label=r'3sigma_Y:$<0.800um$')\n",
"ax[1].axhline(0.57,c='green',ls='-.',label=r'3sigma_Y:$<0.570um$')\n",
"for i in range(len(AlignMarkY.columns)):\n",
" ax[1].annotate(round(AYdescibe.loc['3sigma'][i],3), \n",
" xy=(i,AYdescibe.loc['3sigma'][i]),\n",
" xytext=(i,AYdescibe.loc['3sigma'][i]),\n",
" color=\"r\")\n",
"ax[1].legend() \n",
"ax[1].set_title('3sigam_Y/Day')\n",
"# ax[2].plot([i for i in AlignMarkY.columns],AYdescibe.loc['range'],marker = 'o')\n",
"# for i in range(len(AlignMarkY.columns)):\n",
"# ax[2].annotate(round(AYdescibe.loc['range'][i],3), \n",
"# xy=(i,AYdescibe.loc['range'][i]),\n",
"# xytext=(i,AYdescibe.loc['range'][i]),\n",
"# color=\"r\")\n",
"# ax[2].set_title('Range_Y/Day')\n",
"plt.suptitle('Die1 对位MarkY')\n",
"fig.tight_layout()\n",
"plt.savefig('Die1/Die1对位MarkY.jpg',dpi=200)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "6ace8d23",
"metadata": {},
"source": [
"## 角度Mark"
]
},
{
"cell_type": "markdown",
"id": "c70c8ca9",
"metadata": {},
"source": [
"### 角度MarkX"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "87ad2953",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>10.9.1-Die1</th>\n",
" <th>10.10.1-Die1</th>\n",
" <th>10.10.2-Die1</th>\n",
" <th>10.11.1-Die1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>72.000000</td>\n",
" <td>70.000000</td>\n",
" <td>74.000000</td>\n",
" <td>75.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>-3.491917</td>\n",
" <td>-3.463871</td>\n",
" <td>-3.685568</td>\n",
" <td>-3.396920</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>0.300497</td>\n",
" <td>0.311372</td>\n",
" <td>0.295496</td>\n",
" <td>0.306453</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>-4.376000</td>\n",
" <td>-4.065000</td>\n",
" <td>-4.318000</td>\n",
" <td>-4.468000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>-3.656250</td>\n",
" <td>-3.717750</td>\n",
" <td>-3.879750</td>\n",
" <td>-3.595000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>-3.449000</td>\n",
" <td>-3.416000</td>\n",
" <td>-3.691000</td>\n",
" <td>-3.367000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>-3.311500</td>\n",
" <td>-3.321250</td>\n",
" <td>-3.461000</td>\n",
" <td>-3.211500</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>-3.000000</td>\n",
" <td>-2.496000</td>\n",
" <td>-3.052000</td>\n",
" <td>-2.681000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>range</th>\n",
" <td>1.376000</td>\n",
" <td>1.569000</td>\n",
" <td>1.266000</td>\n",
" <td>1.787000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3sigma</th>\n",
" <td>0.901491</td>\n",
" <td>0.934116</td>\n",
" <td>0.886488</td>\n",
" <td>0.919359</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 10.9.1-Die1 10.10.1-Die1 10.10.2-Die1 10.11.1-Die1\n",
"count 72.000000 70.000000 74.000000 75.000000\n",
"mean -3.491917 -3.463871 -3.685568 -3.396920\n",
"std 0.300497 0.311372 0.295496 0.306453\n",
"min -4.376000 -4.065000 -4.318000 -4.468000\n",
"25% -3.656250 -3.717750 -3.879750 -3.595000\n",
"50% -3.449000 -3.416000 -3.691000 -3.367000\n",
"75% -3.311500 -3.321250 -3.461000 -3.211500\n",
"max -3.000000 -2.496000 -3.052000 -2.681000\n",
"range 1.376000 1.569000 1.266000 1.787000\n",
"3sigma 0.901491 0.934116 0.886488 0.919359"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"AngleMarkX = TotalData['M1X'].dropna(subset='QX8800SP_Index').set_index('QX8800SP_Index').iloc[:,-4:]\n",
"RXdescibe = describe_3s(AngleMarkX)\n",
"RXdescibe"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "2dcd5e1f-bcd3-4100-8aa0-f2125301c1e3",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bc1bb2feab034e478996ec757487262b",
"version_major": 2,
"version_minor": 0
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAImCAYAAACrXu7BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADeLElEQVR4nOzdd3wT5R8H8M9dVtOmu2UUaBmFsveWDQLKVEBRUEBkiIoyRMHBUhERUFFEhiBDUIaACP4QBzhAljIU6ADKLnSmSdukSe73R9pr0z3Twef9evXV3nruufRyd997liBJkgQiIiIiIiInEMs6A0REREREdP9gAEJERERERE7DAISIiIiIiJyGAQgRERERETkNAxAiIiIiInIaBiBEREREROQ0DECIiIiIiMhpGIAQEREREZHTMAAhIiIiIiKnYQBCREREREROwwCEiOg+sWrVKnzyySclktaCBQuwdevWEkmLiIjuLwxAiIjuA+Hh4Vi5ciXq1KlTIumlpKRg/fr1DvNSU1NhMBhKJH0iIqq8GIAQERXCX3/9hZCQEISEhKBVq1YYPnw4tm/fnue6xbF9+3Y89dRTxUrDYDBg2rRpMJlMmD59upz/9J9HH30UqampOW77+eefZ1s/JCQEO3fuRGRkpMO8pk2bok2bNjCZTACAFStWICQkBG+//bac3oIFCxASEoIVK1YU65gyCwkJwV9//VVi6WX166+/IiQkBCdOnJDnbd68GY0bN8b169dLbb9ERJWVsqwzQERUEX3wwQfw8vLC7t278cYbb+DOnTt48cUXHdZp0qQJduzYUeR9nDx5EgsXLkSLFi2KnIbRaMQLL7wAnU6HkydPQq1Wy8sOHTqEV199Fe+99x5UKlWO2yuVSoSEhMhB1unTp7F7924sWLBAXmft2rWwWCwYP348zGYzNBqNQxoXL16U/7506VKRj6Ws9OjRA40bN8bGjRvRrl07SJKETZs2YeDAgahVq1ZZZ4+IqMJhAEJEVATBwcFo1KgRunbtCpPJhM8//xxPPvkkfH195XV0Oh2aNWtWpPR/+eUXTJ8+HfXq1StyHi9fviyXfGzYsAGiKMJisQAAzGYzli5dimeffRY1atSA0WgEAGi1WohiRuG4KIpQKBQQBAGCIECv1+OXX35xCDJu3LiB1NRUuLq6QqlUQpIkCIIgL88cdFTEAAQAJk2ahOnTp+PmzZsICwtDZGQkVq5cWdbZIiKqkBiAEBEV0+OPP44ff/wRv/32G4YOHVoiaR4/fhwffvghzp49i+PHjxd6e4PBgIkTJ6JKlSoIDQ1F9+7dc1zvs88+w2effSZPf//99wgODnZYRxAEvPfee/jqq6+gUChgsVgcAiur1QpJknDgwAFYLBb8/vvv8Pf3BwA0b94c58+fx61btyBJEoxGY5GDsrLUt29fBAUFYcuWLbh48SL69u1brOCQiOh+xjYgRETF1LBhQwBARESEw/y82oBcuHABTz/9NJo3b47evXtjw4YNDstfeeWVXIOGgtDpdFi3bh02bNgAhUKBVatW4cSJEzhx4gTWrFkDAPL0iRMn8P333wOAQxUtALDZbFAqlZg9ezYuXLiA5cuXw8vLC+fOnZN/HnnkEQwZMgT//vsv/v33X/j5+cnbu7i4IDAwEJcuXcLFixdRq1YtaLVah31s2LABvXv3RosWLTBkyBD8+eefDstfe+01vPbaa4iKisKMGTPQoUMHXLt2Lcfjjo6ORp8+ffDyyy/DZrMV+fPLShRFTJo0CVu3bsWff/6JSZMmlVjaRET3GwYgRETF5OnpCQBISEgo0PpxcXEYO3YsvLy8sHbtWowbNw7vv/++Q2P2zNWgiiooKAhqtRo2m02uSpX+A8BhOn1e1v2mpKRApVJBpVJBEARYrVYA9rYl6T9Wq1V+2FcqlQ7VrwB7I/GLFy/i0qVLaNCggcOy7777DosWLcKTTz6JdevWoU2bNpg6dWq23rTi4+PxxBNPQBAEvPjii/D29s52vAaDARMmTECdOnWwZMmSbMcSExODyMhIxMXFFfajBAAMHDgQLi4uaNOmDZo0aVKkNIiIiFWwiIiKLesDd342b94MURSxdOlSqFQqtG/fHn/99Rf27NmDESNGlGjezGYzrFYrJk6cmG1Z69at893eZDLBw8NDnk5JSUF8fHy2bR966KFc02jQoAEuXboEm82GkJAQhyplVatWxZIlSzB48GAAgJubG7Zs2YLLly+jefPm8nq//PILXnvtNYwbNy7X45wyZQqsVitWrFiRY6P6JUuW4Ntvv8WECRMwc+bMfI89q9DQUMTGxsJkMiE+Ph5eXl6FToOIiBiAEBEVm16vB5BREpKf9AfZpk2bOsxPbzdRkuLj4wEABw4cQN26dQHYe9caNWqUQ4PwO3fu5FjlKzExEf7+/khNTYVer0fv3r1x+vTpHPdlMpmy9YAF2AOQffv2QZIkDBgwwCEAad++PY4cOYK5c+fi77//lquxJScnO6QRHByMMWPG5Hqcb7/9NoxGI5KSkmAwGODi4pLrukW1cuVKdOzYEVeuXMHGjRsxderUEt8HEdH9gAEIEVExhYaGAkC2xtt5ad68uUNXtgDkalAl6cqVKwAAlUol93SVPk5H+jSQ/YE/3Z07d9CkSRNERERgxIgREAQBNpsNbm5u8jqpqakwGo1YuHAhHnvssWxpNGjQQM5H1ipYS5YswVdffYXHH38ckydPRps2bdCtW7dsaTRr1izPammCIGD37t147rnn8NFHH2HhwoXZ1nnvvffw3nvv5ZpGXsLCwnDo0CGsW7cO//33H9asWYNnnnkGOp2uSOkREd3PGIAQERXTN998A41GU+BG4/Xr18fff/+NevXqyY2+9+/fj5MnT+Ktt94q0bydPXsWANCnT59sywpSBSsyMhK9evVCw4YNce7cOURERGDkyJHYsGEDGjVqBJvNhgkTJkAUxVyrjwUGBkKr1UKSJAQFBTks++abbzB27Fi89NJLALI35C+oN998E35+fpg5cybGjh2LUaNGyZ0DpLt79y4SExPh7e0NHx+fQqW/atUq1K9fHw888ACaN2+Ozz77DFu2bGFjdCKiImAjdCKiIggPD8cff/yBWbNmYf/+/XjllVcK3CZg9OjRMJvNmDZtGo4ePYp9+/Zh/vz5JdLwPDNJkrB371707NkTly5dkn+2bNkCAA7zDh8+nG37e/fuISIiwqEtRr169fDiiy/iueeeQ0REBObPn49bt25hyZIlubaFEUUR9erVQ3BwcLZj9Pb2xtGjR3HixAk5GAEgN3YvKKXS/j6tQ4cOeOCBB7Bo0aJs6yxbtgwPP/wwvvjii0KlHRkZiQMHDuCZZ54BALi7u2PEiBHYsGFDriVHRESUOwYgRERFMHPmTDz//PO4fv06Pv30Uzz11FMF3tbHxwcbNmxAYmIiJk2ahMWLF2P48OGYNWtWiebxq6++QmhoqPxQny4lJQWAPUBJFx0dDcCxGtjBgwfh6+ubrdrU008/jVatWmHIkCHYv38/Vq9enW/w1aBBg2zpAPZqUSaTCRMmTMCWLVswY8YMeHt749SpU4U5VAczZ87E8ePHcejQoSKnkdmqVavg4+ODAQMGyPPGjBkDvV6Pr7/+ukT2QUR0PxGkzHcgIiKqFGJjYzFo0CD07t07W1uTAwcO4OWXX8Y///wDtVqNgQMH4vLly2jWrBm2b98ut/Po378/evbsiRdeeAF37tzB1atXcebMGRw5cgQxMTHo3r07Tp8+jaioKLRs2RL16tWDt7c3qlWrhkcffbTQvYMREdH9gQEIEVElde/ePXh5eeXYJW1m169fhyAIqFmzpjxPkiQcPHgQDRo0gCiKeOKJJ1C3bl00a9YMXbp0QceOHeXSkrCwMBw7dgznzp1DWFgYunbtiunTp5fqsRERUcXFAISIiIiIiJyGbUCIiIiIiMhpGIAQEREREZHTMAAhIiIiIiKnYQBCREREREROwwCEiIiIiIichgEIERERERE5DQMQIiIiIiJyGgYgRERERETkNAxAiIiIiIjIaRiAEBERERGR0zAAISIiIiI
"text/html": [
"\n",
" <div style=\"display: inline-block;\">\n",
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
" Figure\n",
" </div>\n",
" <img src='
" </div>\n",
" "
],
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(3,1)\n",
"ax[0].plot([i+1 for i in range(len(AngleMarkX.columns))],RXdescibe.loc['mean'],linestyle = '-.',marker = 'o',color='w')\n",
"AngleMarkX.boxplot(ax=ax[0])\n",
"ax[0].axhline(0,c='orange',ls='-.',label=r'Mean_X:$0um\\pm0.10um$')\n",
"for i in range(len(AngleMarkX.columns)):\n",
" ax[0].annotate(round(RXdescibe.loc['mean'][i],2), \n",
" xy=(i+1,RXdescibe.loc['mean'][i]),\n",
" xytext=(i+0.95,RXdescibe.loc['mean'][i]+0.05),\n",
" color=\"r\")\n",
"ax[0].legend()\n",
"ax[0].set_title('mean_X/Day')\n",
"ax[1].plot([i for i in AngleMarkX.columns],RXdescibe.loc['3sigma'],marker = 'o')\n",
"ax[1].axhline(0.8,c='orange',ls='-.',label=r'3sigma_X:$<0.800um$')\n",
"for i in range(len(AngleMarkX.columns)):\n",
" ax[1].annotate(round(RXdescibe.loc['3sigma'][i],3), \n",
" xy=(i,RXdescibe.loc['3sigma'][i]),\n",
" xytext=(i,RXdescibe.loc['3sigma'][i]),\n",
" color=\"r\")\n",
"ax[1].legend() \n",
"ax[1].set_title('3sigam_X/Day')\n",
"ax[2].plot([i for i in AngleMarkX.columns],RXdescibe.loc['range'],marker = 'o')\n",
"for i in range(len(AngleMarkX.columns)):\n",
" ax[2].annotate(round(RXdescibe.loc['range'][i],3), \n",
" xy=(i,RXdescibe.loc['range'][i]),\n",
" xytext=(i,RXdescibe.loc['range'][i]),\n",
" color=\"r\")\n",
"ax[2].set_title('Range_X/Day')\n",
"plt.suptitle('Die1 角度MarkX')\n",
"fig.tight_layout()\n",
"plt.savefig('Die1/Die1角度MarkX.jpg',dpi=200)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "fca6defb",
"metadata": {},
"source": [
"### 角度MarkY"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "389557c5",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>10.9.1-Die1</th>\n",
" <th>10.10.1-Die1</th>\n",
" <th>10.10.2-Die1</th>\n",
" <th>10.11.1-Die1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>72.000000</td>\n",
" <td>70.000000</td>\n",
" <td>74.000000</td>\n",
" <td>75.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>-1.151528</td>\n",
" <td>-3.249543</td>\n",
" <td>-2.846649</td>\n",
" <td>-1.147520</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>0.419282</td>\n",
" <td>0.710503</td>\n",
" <td>0.496586</td>\n",
" <td>0.889048</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>-2.650000</td>\n",
" <td>-4.354000</td>\n",
" <td>-3.686000</td>\n",
" <td>-2.350000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>-1.395750</td>\n",
" <td>-3.796500</td>\n",
" <td>-3.263000</td>\n",
" <td>-1.570500</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>-1.132500</td>\n",
" <td>-3.477000</td>\n",
" <td>-2.911000</td>\n",
" <td>-1.315000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>-0.870750</td>\n",
" <td>-2.731000</td>\n",
" <td>-2.436250</td>\n",
" <td>-0.937000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>-0.330000</td>\n",
" <td>-1.446000</td>\n",
" <td>-1.644000</td>\n",
" <td>4.678000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>range</th>\n",
" <td>2.320000</td>\n",
" <td>2.908000</td>\n",
" <td>2.042000</td>\n",
" <td>7.028000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3sigma</th>\n",
" <td>1.257846</td>\n",
" <td>2.131509</td>\n",
" <td>1.489758</td>\n",
" <td>2.667143</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 10.9.1-Die1 10.10.1-Die1 10.10.2-Die1 10.11.1-Die1\n",
"count 72.000000 70.000000 74.000000 75.000000\n",
"mean -1.151528 -3.249543 -2.846649 -1.147520\n",
"std 0.419282 0.710503 0.496586 0.889048\n",
"min -2.650000 -4.354000 -3.686000 -2.350000\n",
"25% -1.395750 -3.796500 -3.263000 -1.570500\n",
"50% -1.132500 -3.477000 -2.911000 -1.315000\n",
"75% -0.870750 -2.731000 -2.436250 -0.937000\n",
"max -0.330000 -1.446000 -1.644000 4.678000\n",
"range 2.320000 2.908000 2.042000 7.028000\n",
"3sigma 1.257846 2.131509 1.489758 2.667143"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"AngleMarkY = TotalData['M1Y'].dropna(subset='QX8800SP_Index').set_index('QX8800SP_Index').iloc[:,-4:]\n",
"RYdescibe = describe_3s(AngleMarkY)\n",
"RYdescibe"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "c7a1606f-4530-4fa6-89ce-892a57c06493",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b59e58f6784145909a0445419c445a56",
"version_major": 2,
"version_minor": 0
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAImCAYAAACrXu7BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADIZklEQVR4nOzdd3gUVdsG8HtmS7LZzaYRUoAASSAU6VWFFylKEQQLNlBQQBELCojlRRHxFRQRKyqKoogNCyqCYvdTQao0BZIAoSUhfbO72Trz/bHJJJueTQ/377q4kqnn7DLZnWfOc84RZFmWQURERERE1ADExq4AERERERFdOBiAEBERERFRg2EAQkREREREDYYBCBERERERNRgGIERERERE1GAYgBARERERUYNhAEJERERERA2GAQgRERERETUYBiBERERERNRgGIAQEREREVGDYQBCRHSBeP311/HKK6/UybmefPJJfPjhh3VyLiIiurAwACEiugAkJSVh9erV6NixY52cz2az4Z133vFa53Q6YTab6+T8RETUcjEAISKqgb/++gsJCQlISEhAnz59cN1112Hjxo2V7lsbGzduxC233FKrc5jNZjzwwAOw2+2YN2+eUv+if9dccw2cTme5x77xxhtl9k9ISMBnn32GlJQUr3UXXXQR+vXrB7vdDgB4+eWXkZCQgKeeeko535NPPomEhAS8/PLLtXpNJSUkJOCvv/6qs/OVtmTJEgwbNgwul0tZV1BQgIEDB9bp6yAiulCoG7sCRETN0XPPPYfg4GBs2rQJixYtQlpaGu69916vfbp3745PP/3U5zJ2796NpUuXolevXj6fw2Kx4J577oHBYMDu3buh1WqVbT/88AMeeughLF++HBqNptzj1Wo1EhISlCBr79692LRpE5588klln7feegsulwszZsyAw+GAn5+f1zmOHDmi/H706FGfX0tjuf322/Hxxx/ju+++w5VXXgkA+OKLL+BwODBlypRGrh0RUfPDAISIyAfx8fHo2rUrhg4dCrvdjjfeeAM333wzwsLClH0MBgN69Ojh0/l//vlnzJs3D3FxcT7X8fjx40rLx7p16yCKovIU3+FwYOXKlZg5cybatGkDi8UCANDpdBDF4sZxURShUqkgCAIEQYDJZMLPP//sFWScOXMGTqcTAQEBUKvVkGUZgiAo20sGHc0xAGnXrh3GjBmDd999F1deeSVkWcb69etxzTXXIDQ0tLGrR0TU7DAAISKqpRtuuAHff/89/u///g+TJk2qk3Pu3LkTL7zwAg4cOICdO3fW+Hiz2Yw77rgDrVu3xrFjxzBs2LBy93vttdfw2muvKcvffPMN4uPjvfYRBAHLly/HBx98AJVKBZfL5RVYud1uyLKMrVu3wuVy4ffff0d4eDgAoGfPnjh06BDOnTsHWZZhsVh8Dsoa06xZszBp0iTs27cPJpMJKSkpWLNmTWNXi4ioWWIfECKiWurSpQsAIDk52Wt9ZX1A/v33X9x6663o2bMnRo4ciXXr1nltf/DBBysMGqrDYDBg7dq1WLduHVQqFV5//XXs2rULu3btwptvvgkAyvKuXbvwzTffAIBXihYASJIEtVqNRx55BP/++y9WrVqF4OBgHDx4UPl39dVXY+LEiTh8+DAOHz6MVq1aKcf7+/sjJiYGR48exZEjR9CuXTvodDqvMtatW4eRI0eiV69emDhxIv7880+v7Q8//DAefvhhpKenY/78+Rg0aBBOnTpV7uvOzMzEqFGjcP/990OSJJ/fv9K6du2KIUOG4N1338W7776LMWPGoF27dnV2fiKiCwlbQIiIaikoKAgAkJeXV639c3JyMH36dAwaNAhvvfUWjh07hqeffhp6vR6TJ08GAK80KF+1b98egCeIKEqlAlDmZ8nfS5drs9mg0WiUPiJutxsAlJStonVFN/tqddmvlYSEBBw5cgSyLKNz585e79PXX3+NZcuWYeHChejVqxe2bNmC++67D7/88gsMBoOyX25uLm666Sb07dsX9957L0JCQsqUYzabMWvWLHTs2BErVqwo81qysrJgNpthNBrLPb4qM2fOxO233w5ZlvH555/X+HgiIvJgAEJEVEsl+ztUx/vvvw9RFLFy5UpoNBoMHDgQf/31F7788kslAKkrDocDbrcbd9xxR5ltffv2rfJ4u90Oo9GoLNtsNuTm5pY5duzYsRWeo3Pnzjh69CgkSUJCQoJXSllERARWrFiBq666CgCg1+uxYcMGHD9+HD179lT2+/nnn/Hwww/jtttuq/B1zpkzB263Gy+//HK5nepXrFiBL774ArNmzcKCBQuqfO2lXXzxxYiLi0NgYCC6detW4+OJiMiDAQgRUS2ZTCYAxS0hVTl27Biys7Nx0UUXea0v6jdRl3JzcwEAW7duRWxsLADP6FpTpkzx6hCelpZWbspXfn4+wsPD4XQ6YTKZMHLkSOzdu7fcsux2e5kRsABPALJ582bIsowrr7zSKwAZOHAgfvvtNyxevBj79u1T0tgKCgq8zhEfH49p06ZV+DqfeuopWCwWWK1WmM1m+Pv7V7hvbYSEhCAwMLBezk1EdKFgAEJEVEvHjh0DgDKdtyvTs2dPr6FsAe+UqLpy4sQJAIBGo1HSporm6SiZRlX6hr9IWloaunfvjuTkZEyePBmCIECSJOj1emUfp9MJi8WCpUuX4vrrry9zjs6dOyv16Ny5s9e2FStW4IMPPsANN9yA2bNno1+/fvjPf/5T5hw9evSoNC1NEARs2rQJd911F1588UUsXbq0zD7Lly/H8uXLKzwHERE1DAYgRES19Mknn8DPz6/ancY7deqEffv2IS4uTun0vWXLFuzevRuPP/54ndbtwIEDAIBRo0aV2VadFKyUlBSMGDECXbp0wcGDB5GcnIwbb7wR69atQ9euXSFJEmbNmgVRFCtMH4uJiYFOp4Msy0q/lCKffPIJpk+fjrlz5wIo25G/uh577DG0atUKCxYswPTp0zFlyhRlcIAi58+fR35+PkJCQjh8LhFRI+IoWEREPkhKSsIff/yBhQsXYsuWLXjwwQcRHBxcrWOnTp0Kh8OBBx54ANu3b8fmzZuxZMmSOul4XpIsy/jqq68wfPhwHD16VPm3YcMGAPBa9+uvv5Y5PiMjA8nJyV59MeLi4nDvvffirrvuQnJyMpYsWYJz585hxYoVFfaFEUURcXFxiI+PL/MaQ0JCsH37duzatUsJRoDizu7VVdT5fdCgQbj00kuxbNmyMvs8//zzGDduHN5+++0anZuIiOoWAxAiIh8sWLAAd999N06fPo1XX30Vt9xyS7WPDQ0Nxbp165Cfn48777wTzzzzDK677josXLiwTuv4wQcf4NixY8pNfRGbzQbAE6AUyczMBOCdBrZt2zaEhYWVSZu69dZb0adPH0ycOBFbtmzBmjVrqgy+OnfuXOY8gCctym63Y9asWdiwYQPmz5+PkJAQ7NmzpyYv1cuCBQuwc+dO/PDDDz6fg4iI6o8gl/wGIiKiFiE7OxsTJkzAyJEjy/Q12bp1K+6//378/fff0Gq1GD9+PI4fP44ePXpg48aNSj+PMWPGYPjw4bjnnnuQlpaGkydPYv/+/fjtt9+QlZWFYcOGYe/evUhPT0fv3r0RFxeHkJAQREZG4pprrqnx6GBERHRhYABCRNRCZWRkIDg4uNwhaUs6ffo0BEFA27ZtlXWyLGPbtm3o3LkzRFHETTfdhNjYWPTo0QNDhgzB4MGDldaSxMRE7NixAwcPHkRiYiKGDh2KefPm1etrIyKi5osBCBERERERNRj2ASEiIiIiogbDAISIiIiIiBoMAxAiIiIiImowDECIiIiIiKjBMAAhIiIiIqIGwwCEiIiIiIgaDAMQIiIiIiJqMAxAiIiIiIiowTAAISIiIiKiBsMAhIiIiIiIGgwDECIiIiIiajAMQIiIiIiIqMEwACEiIiIiogbDAISIiIiIiBoMAxAiIiIiImowDECIiIiIiKjBMAAhIiIiIqIGwwCEiIiIiIgaDAMQIiJqsux2OzZv3tzY1SAiojrEAISIiOqVLMuYMGEC5s2
"text/html": [
"\n",
" <div style=\"display: inline-block;\">\n",
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
" Figure\n",
" </div>\n",
" <img src='
" </div>\n",
" "
],
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(3,1)\n",
"ax[0].plot([i+1 for i in range(len(AngleMarkY.columns))],RYdescibe.loc['mean'],linestyle = '-.',marker = 'o',color='w')\n",
"AngleMarkY.boxplot(ax=ax[0])\n",
"ax[0].axhline(0,c='orange',ls='-.',label=r'Mean_Y:$0um\\pm0.10um$')\n",
"for i in range(len(AngleMarkY.columns)):\n",
" ax[0].annotate(round(RYdescibe.loc['mean'][i],2), \n",
" xy=(i+1,RYdescibe.loc['mean'][i]),\n",
" xytext=(i+0.95,RYdescibe.loc['mean'][i]+0.05),\n",
" color=\"r\")\n",
"ax[0].legend()\n",
"ax[0].set_title('mean_Y/Day')\n",
"ax[1].plot([i for i in AngleMarkY.columns],RYdescibe.loc['3sigma'],marker = 'o')\n",
"ax[1].axhline(0.8,c='orange',ls='-.',label=r'3sigma_Y:$<0.800um$')\n",
"for i in range(len(AngleMarkY.columns)):\n",
" ax[1].annotate(round(RYdescibe.loc['3sigma'][i],3), \n",
" xy=(i,RYdescibe.loc['3sigma'][i]),\n",
" xytext=(i,RYdescibe.loc['3sigma'][i]),\n",
" color=\"r\")\n",
"ax[1].legend() \n",
"ax[1].set_title('3sigam_Y/Day')\n",
"ax[2].plot([i for i in AngleMarkY.columns],RYdescibe.loc['range'],marker = 'o')\n",
"for i in range(len(AngleMarkY.columns)):\n",
" ax[2].annotate(round(RYdescibe.loc['range'][i],3), \n",
" xy=(i,RYdescibe.loc['range'][i]),\n",
" xytext=(i,RYdescibe.loc['range'][i]),\n",
" color=\"r\")\n",
"ax[2].set_title('Range_Y/Day')\n",
"plt.suptitle('Die1 角度MarkY')\n",
"fig.tight_layout()\n",
"plt.savefig('Die1/Die1角度MarkY.jpg',dpi=200)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "57aab54c-ca77-46e9-bdfa-becc3323ab8f",
"metadata": {},
"source": [
"## 角度"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "3b9aba3d-417d-4292-ac07-8c9d25d260b8",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>10.9.1-Die1</th>\n",
" <th>10.10.1-Die1</th>\n",
" <th>10.10.2-Die1</th>\n",
" <th>10.11.1-Die1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>72.000000</td>\n",
" <td>70.000000</td>\n",
" <td>74.000000</td>\n",
" <td>75.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>-0.003060</td>\n",
" <td>0.005293</td>\n",
" <td>0.003281</td>\n",
" <td>-0.002664</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>0.001829</td>\n",
" <td>0.003321</td>\n",
" <td>0.002353</td>\n",
" <td>0.004332</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>-0.008847</td>\n",
" <td>-0.002692</td>\n",
" <td>-0.003765</td>\n",
" <td>-0.030935</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>-0.004100</td>\n",
" <td>0.002516</td>\n",
" <td>0.001854</td>\n",
" <td>-0.003680</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>-0.003255</td>\n",
" <td>0.006528</td>\n",
" <td>0.003540</td>\n",
" <td>-0.001873</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>-0.002056</td>\n",
" <td>0.007783</td>\n",
" <td>0.004918</td>\n",
" <td>-0.000754</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>0.003344</td>\n",
" <td>0.010516</td>\n",
" <td>0.009001</td>\n",
" <td>0.002542</td>\n",
" </tr>\n",
" <tr>\n",
" <th>range</th>\n",
" <td>0.012192</td>\n",
" <td>0.013209</td>\n",
" <td>0.012766</td>\n",
" <td>0.033477</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3sigma</th>\n",
" <td>0.005486</td>\n",
" <td>0.009964</td>\n",
" <td>0.007059</td>\n",
" <td>0.012997</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 10.9.1-Die1 10.10.1-Die1 10.10.2-Die1 10.11.1-Die1\n",
"count 72.000000 70.000000 74.000000 75.000000\n",
"mean -0.003060 0.005293 0.003281 -0.002664\n",
"std 0.001829 0.003321 0.002353 0.004332\n",
"min -0.008847 -0.002692 -0.003765 -0.030935\n",
"25% -0.004100 0.002516 0.001854 -0.003680\n",
"50% -0.003255 0.006528 0.003540 -0.001873\n",
"75% -0.002056 0.007783 0.004918 -0.000754\n",
"max 0.003344 0.010516 0.009001 0.002542\n",
"range 0.012192 0.013209 0.012766 0.033477\n",
"3sigma 0.005486 0.009964 0.007059 0.012997"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Angle = TotalData['Angle13'].dropna(subset='QX8800SP_Index').set_index('QX8800SP_Index').iloc[:,-4:]\n",
"Angdescibe = describe_3s(Angle)\n",
"Angdescibe"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "5ce2eec7-a959-4716-92a0-4aaad88b96b3",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "854e3fc819b94859a75791c550882ab7",
"version_major": 2,
"version_minor": 0
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAImCAYAAACrXu7BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADS+ElEQVR4nOzdd3QU1d/H8ffsbnoPhNA7Ih2B0MSGiICIWLB3FCkqCAqCKE1FRMCKiKKIoqKIiGLhZ3lURLpSlBoh9AgkpLctzx9LNlnS24bA53VOTjJz5965s5ls9ju3GQ6Hw4GIiIiIiIgHmCq7AiIiIiIicv5QACIiIiIiIh6jAERERERERDxGAYiIiIiIiHiMAhAREREREfEYBSAiIiIiIuIxCkBERERERMRjFICIiIiIiIjHKAARERERERGPUQAiIiIiIiIeowBEROQ8Nm/ePF5//fVyKWvq1Kl8/PHH5VJWbikpKWRmZpZ7uadOnSr3MkVEpGgKQEREzlN79+5l7ty5NGrUqFzKS09P57333nPbl5WVRXJycqnLTEhI4N577+Wjjz7Kk/bnn38ye/Zsfvnll1KV/cQTTzB16lQcDkep6yciIiVnOPTOKyJSJuvWrePuu+8GwN/fnyZNmnDLLbcwaNCgAo/dtWtXqc/32WefsWLFCj744INSl5GcnMxtt93G7t27801v1aoVS5YswcvLK0/aW2+9xezZs0t0vq1bt+Lj41OiPBkZGdx66620atWKyZMnY7FYXGl79uxh+vTpjBs3jg8//JDbbruNli1blqj8EydOMGTIEDp06MDEiRNLlFdERErPUvQhIiJSHC+99BKhoaEsX76ciRMncuzYMR555BG3Y1q1asXSpUtLfY6NGzcybdo02rVrV+oyUlJSePjhhwkMDGTjxo14e3u70n744QfGjRvHCy+8kG/wAWCxWGjevDmfffYZAJs3b2b58uVMnTrVdcw777yD1Wpl8ODBZGZmljj4AHjuueeoVasWzz77bJ60PXv2cO2119K8eXN69uzJ/v37SxyAVK9enQULFnD99dcTFRXF1VdfXeI6iohIySkAEREpJ02bNqVFixZccsklZGRk8NZbb3H77bdTrVo11zGBgYG0adOmVOX//PPPjB49miZNmpS6jv/++y+PPfYYGRkZLFy4EJPJhNVqBSAzM5NZs2bxwAMPUKdOHVJSUgDw8/PDZMrpsWsymTCbzRiGgWEYJCYm8vPPP7sFGYcOHSIrKwt/f38sFgsOhwPDMIpdz927d/O///2P7777Lt/0qKgoRo8eTUZGBqtWreKFF14ozctBWFgYL7zwAuPGjePKK690a2UREZGKoXdaEZEKcMstt/C///2P3377jYEDB5ZLmevXr+fll19m69atrF+/vsT5k5OTGTJkCDVq1GD37t1cdtll+R735ptv8uabb7q2V65cSdOmTd2OMQyDF154gY8++giz2YzVanULrGw2Gw6Hg2+//Rar1crq1auJiIgodl0/+ugjrr/+ekJCQvJNj4iIcL0WM2bMKFHZZ+ratSthYWH8/PPPXHXVVaUuR0REikeD0EVEKsCFF14IQHR0tNv+devW0bx583zz7Nixg7vvvpu2bdty5ZVXsnDhQrf0J554osCgoTgCAwNZsGABCxcuxGw2M2/ePDZs2MCGDRt4++23AVzbGzZsYOXKlQBuXbQA7HY7FouF8ePHs2PHDubMmUNoaCjbtm1zfV1//fVcd911/P333/z9999Ur169RHXdunVrkddarVo1rrjiijIFH9kuu+wytmzZUuZyRESkaGoBERGpANlP7hMSEop1fHx8PPfeey9dunThnXfeYffu3Tz//PMEBAS4BrPn7gZVWg0aNACcQUR2Vyogz/fcP5953vT0dLy8vFxjRGw2G4Cry1b2PrvdDlCqbk1HjhwhMjKyxPlKq0aNGmzevNlj5xMROZ8pABERqQAlGe8A8OGHH2IymZg1axZeXl507tyZdevW8eWXX+Y7m1ZZZGZmYrPZGDJkSJ60Dh06FJk/IyOD4OBg13Z6ejqnTp3Kk7dv376lrqOXl5dbQFPRUlJSChx0LyIi5UsBiIhIBUhMTAQocAzDmXbv3k1cXBytW7d2218e3YvOlL0A37fffkvjxo0B5+xad9xxh9v0wMeOHcu3G1RSUhIRERFkZWWRmJjIlVdeWWDrQUZGRqlmwGrYsCG7d++mVatWJc5bGrt376ZZs2YeOZeIyPlOAYiISAXIXl/jzMHbhWnbtq3bVLbg3iWqvOzbtw9wb2XIyMgA3LtRpaWl5Zv/2LFjtGrViujoaAYNGoRhGNjtdgICAlzHZGVlkZKSwrRp07j55ptLXMfLL7+cpUuXcv3115c4b0klJCTwww8/8MADD1T4uURERAGIiEiF+PTTT/Hx8Sn2oPFmzZrx559/0qRJE9eg72+++YaNGzfyzDPPlGvdtm7dCkCvXr3ypBWnC1ZMTAw9e/bkwgsvZNu2bURHR3PrrbeycOFCWrRogd1u58EHH8RkMpW6+9iNN97IW2+9xapVq+jdu3epyiiu2bNn0759e9fEASIiUrE0C5aISDnZu3cvv//+O2PHjuWbb77hiSeeIDQ0tFh577zzTjIzM3nsscf4448/+Prrr5kyZUq5DDzPzeFwsGLFCq644gp27drl+lq8eDGA275ffvklT/7jx48THR1N27ZtXfuaNGnCI488wrBhw4iOjmbKlCkcOXKEmTNnlngsTLbQ0FAmTJjAhAkTClytvTwsXbqUr776ikmTJlXYOURExJ1aQEREysnjjz+On58fLVq04I033si3haEg4eHhLFy4kBdeeIGHHnqIkJAQbrrpJkaOHFmudfzoo4/YvXs3Tz31lNv+9PR0ALcFA0+cOAG4dwNbtWoV1apV44ILLnDLf/fdd/Pnn39y3XXX4efnx7Jly4odfBVk4MCBHDhwgNtvv50333yTqKioMpV3pnfffZdXX32VN954g0aNGpVr2SIiUjDD4XA4KrsSIiJS8eLi4rj22mu58sor84w1+fbbbxk1ahR//fUX3t7e9O/fn3///Zc2bdrw2WefucZ59OnThyuuuIKHH36YY8eOsX//frZs2cKvv/7KyZMnueyyy9i8eTOxsbG0b9+eJk2aEBYWRs2aNbnhhhtK1SLy2Wef0aFDhzKtAJ+fb7/9ljp16ri15oiISMVTACIich45fvw4oaGhRU45e/DgQQzDoG7duq59DoeDVatWccEFF2Aymbjtttto3Lgxbdq0oUePHnTt2tXVWrJnzx7Wrl3Ltm3b2LNnD5dccgmjR4+u0GsTEZGqQQGIiIiIiIh4jAahi4iIiIiIxygAERERERERj1EAIiIiIiIiHqMAREREREREPEYBiIiIiIiIeIwCEBERERER8RgFICIiIiIi4jEKQERERERExGMUgIiIiIiIiMcoABEREREREY9RACIiIiIiIh6jAERERERERDxGAYiIiIiIiHiMAhAREREREfEYBSAiIiIiIuIxCkBERERERMRjFICIiIiIiIjHKAARERERERGPUQAiIiLntWXLluFwOCq7GiIi5w0FICIiUi4SEhJo0aIFr7zySoWep2fPnixbtqxcytqyZQu//fYbhmHw5JNP0rx5cy688EK6devGI488wq5du8rlPCIikkMBiIiIlIs//vgDu93O77//XtlVKbaXX36ZUaNGubYbNmzIp59+ypNPPsnu3bu59dZbFYSIiJQzBSAiIlIufv/9d7y9vdm+fTuJiYmVXZ0i/fzzzzRu3JgGDRq49vn6+tK2bVuuu+46Fi1aBDiDFBERKT8KQEREpFz8/vvv3HnnnYCzNeRsZrfbeeuttxgxYkSBx0RGRnLFFVfw22+/kZWV5cHaiYic2xSAiIicxe666y4mTZrErbfeSocOHfjmm28YPnw47du3Z86cOQB888039O/fn7Zt2zJw4MA8H/63bdvGHXfcwUUXXcQll1zCSy+95Bp0fejQIZo3b86uXbsYO3YsHTp04NJLL+WLL74oUT1jYmI4fPgwPXv2pEWLFm7dsIp7jsW
"text/html": [
"\n",
" <div style=\"display: inline-block;\">\n",
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
" Figure\n",
" </div>\n",
" <img src='
" </div>\n",
" "
],
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(2,1)\n",
"ax[0].plot([i+1 for i in range(len(Angle.columns))],Angdescibe.loc['mean'],linestyle = '-.',marker = 'o',color='w')\n",
"Angle.boxplot(ax=ax[0])\n",
"ax[0].axhline(0,c='orange',ls='-.',label=r'Mean_Angle:$0°\\pm0.0005°$')\n",
"for i in range(len(Angle.columns)):\n",
" ax[0].annotate(round(Angdescibe.loc['mean'][i],5), \n",
" xy=(i+1,Angdescibe.loc['mean'][i]),\n",
" xytext=(i+0.95,Angdescibe.loc['mean'][i]),\n",
" color=\"r\")\n",
"ax[0].legend()\n",
"ax[0].set_title('mean_Angle/Day')\n",
"ax[1].plot([i for i in Angle.columns],Angdescibe.loc['3sigma'],marker = 'o')\n",
"ax[1].axhline(0.001,c='orange',ls='-.',label=r'3sigma_Angle:$<0.001°$')\n",
"for i in range(len(Angle.columns)):\n",
" ax[1].annotate(round(Angdescibe.loc['3sigma'][i],5), \n",
" xy=(i,Angdescibe.loc['3sigma'][i]),\n",
" xytext=(i,Angdescibe.loc['3sigma'][i]),\n",
" color=\"r\")\n",
"ax[1].legend() \n",
"ax[1].set_title('3sigam_Angle/Day')\n",
"# ax[2].plot([i for i in Angle.columns],Angdescibe.loc['range'],marker = 'o')\n",
"# for i in range(len(Angle.columns)):\n",
"# ax[2].annotate(round(Angdescibe.loc['range'][i],3), \n",
"# xy=(i,Angdescibe.loc['range'][i]),\n",
"# xytext=(i,Angdescibe.loc['range'][i]),\n",
"# color=\"r\")\n",
"# ax[2].set_title('Range_Angle/Day')\n",
"plt.suptitle('Die1 角度(°)')\n",
"fig.tight_layout()\n",
"plt.savefig('Die1/Die1角度.jpg',dpi=200)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "f6b3c183-c253-46fb-80aa-45bb98f0eaad",
"metadata": {},
"source": [
"### 按wafer数据存储"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "374d2fb2-b795-4f8e-81cb-f1796226bd7a",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"id": "639173af",
"metadata": {},
"source": [
"### 补偿值计算"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "d0e8f6b1-0b58-4eab-8412-7b7c9f23a932",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 1.0, 'Die1对位MarkX局部补偿um')"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1914386f18a649d582e2d1fc1cfed340",
"version_major": 2,
"version_minor": 0
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAImCAYAAACrXu7BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeXwU9f3/XzN77yZ75A5nICEBwo2IWKogiiJqoQqWIvWiqBW1UsVqD+VbQaXqr9Z61qv1xBMPsKIUb0FuAkpOIokk5NpNsufszs7vj9mZvTebkLN5Px+PPGBnPjP72d3Z2ffr874YQRAEEARBEARBEARB9AJsX0+AIAiCIAiCIIjBAwkQgiAIgiAIgiB6DRIgBEEQBEEQBEH0GiRACIIgCIIgCILoNUiAEARBEARBEATRa5AAIQiCIAiCIAii1yABQhAEQRAEQRBEr0EChCAIgiAIgiCIXoMECEEQBEEQBEEQvQYJEIIgCIIgCIIgeg0SIARBEARBEARB9BokQAiCIAiCIAiC6DVIgBAEQRAEQRAE0WuQACEIgiAIgiAIotcgAUIQBEEQBEEQRK9BAoQgCIIgCIIgiF6DBAhBEARBEARBEL0GCRCCIAiCIAiCIHoNEiAEQRAEQRAEQfQaJEAIgiAIgiAIgug1SIAQBEEQBEEQBNFrkAAhCIIgCIIgCKLXIAFCEARBEARBEESvQQKEIAiCIAiCIIhegwQIQRAEQRAEQRC9BgkQgiAIgiAIgiB6DRIgBEEQBEEQBEH0GiRACIIgCIIgCILoNUiAEARBEARBEATRa5AAIQiCIAiCIAii1yABQhAEQRAEQRBEr0EChCAIgiAIgiCIXoMECEEQBEEQBEEQvQYJEIIgCIIgCIIgeg0SIARBEARBEARB9BokQAiCIAiCIAiC6DVIgBAEQRAEQRAE0WuQACEIgiAIgiAIotcgAUIQBEEQBEEQRK9BAoQgCIIgCIIgiF6DBAhBEARBEARBEL0GCRCCIAiCIAiCIHoNEiAEQRAEQRAEQfQaJEAIgiC6mYMHD2LZsmWora2Nud/lcsHv90dtt9vtEAShp6fXa7S0tKC+vj6pP6vVGvc8R48eBcdxXZ4Hz/Ow2+1dPh4AampqTun4ZLHZbD1yDSR6fwmCIHobEiAEQRA9wL59++Iakps2bcKFF16IqqoqeZvVasX8+fPx9ttv99YUe5xbb70VZ599dlJ/f/zjH2Oeg+M43HjjjVi/fn2X5/HHP/4Rq1evjtr+5z//GcuWLevw+BMnTuDcc8/Fjh07UF1dDZ7nAQD//Oc/cckll8jjDh06hJaWli7P88cff8TSpUvxySefdPkcsRAEAb/61a/wz3/+s1vPSxAE0VVIgBAE0e/ZtWsXioqKUFRUhKlTp+Kyyy7DG2+8EXfcqfDGG29gxYoVUduPHj2K5557Di+++CJeeukl+W/Pnj1RY3U6HQCAYZiYz7F9+3b4/X7k5eXJ2ywWC84++2w8/PDDaG9vj3ncOeecg6KiIhw5cgSAaFhOmzYNRUVFcb0tneXtt9/GOeecE3f/p59+iqKiIuzevVve9tJLL2H8+PFRXgKVSoXFixejtLQ04d+vf/1raDSasGNrampQVlaGmpoaLF++HFu2bMH+/ftRXl6Oo0ePwm63y9dE6N8333wTNedVq1Zhz549+PTTT8O2+/1+eL3eDt+Tzz77DLm5uZg9ezauv/56PPDAAwAAlmXlz9jpdOKWW27BE0880eH5YtHS0oIrrrgCF198Mc4777wunSMeDMPg73//OzZt2oTnn3++W89NEATRFZR9PQGCIIhkefDBB2E2m7F582b88Y9/RH19PW666SZ5f3FxMd58880un3/Pnj34y1/+gsmTJ0fta2trw9GjR6FUKmWj87///S9WrlyJCRMmQK1Wg2XD13QEQYDH44FCoYBSKd5uq6ursXv3bqxZswYejwfHjh2Tje/58+cDAKqqqpCSkgJADB/KycmB0WiUz3v06FEUFxejtrYWDoejy6+3K8yZMwfjx4/Hv//9b8yYMQOCIODFF1/ERRddhOHDh4eNVSqVcLvdaGxsTHhOl8sV5S3629/+hu3bt8tGPsMwuPbaa+H1eqFWq2UBtHHjRpx55pl46aWX8Nprr2HGjBkARHHhdDqh0WgwatQobNmyBSNHjgx7Dp1OJ4vFRLz11lu47LLLoFKpsG7dOlx11VU4/fTToVAooFAoAADr1q2D0WjEbbfd1uH5IhEEAXfccQfOPffcsOu5Oxk1ahSeffZZLF26FNOmTYt5jRMEQfQWJEAIghgwFBQUYNy4cfjpT38Kj8eDp556Cr/85S+Rnp4OAEhJScHEiRO7dO4dO3ZgzZo1yM/Pj7n/9NNPx+mnnx62bebMmTAajXGNuXPPPReAGKpz1llnAQBefPFFCIKAefPm4YcffsDSpUujxMvHH38s/9/n8+HBBx+UzwUApaWlAEQh0hdcd911WLNmDX788UeUl5fjhx9+wOOPPx41jmVZfPjhh/jwww87PGfo6wOAhx56CG+99RZqamrw29/+FgCwbds2rFu3Dm+//TZYloVOp4PRaERmZiYOHTqEefPmyULv2LFjuPDCC6Oe59///jdmzpwZts3lcqGqqgrFxcVR4/fv34+SkhLZKzZz5kw88sgj+MlPfoJNmzbJ48455xzccMMNUZ6cZPj000/x448/4rHHHuv0sZ1h5MiRWLt2LTZs2BA2d4IgiN6GBAhBEAOSyy+/HB9//DG++OILLFq06JTP9+233+Jvf/sbDh06hG+//TZqv8vlwkMPPYSbbroJJpMJP/74I1pbWzFv3jzMmjULqampsvFbWVmJJUuW4P3330dGRobszWhoaJA9NAaDATk5OTh8+HCn5jl16lRZeJSWlmLy5Mk4ePDgqbz0TjN//nyMHDkSL7/8Mo4ePYr58+fHFW6LFi1KKn8j0nsEiB6UJ598Eueccw4mTZqEjz76CGPHjkV2dra8HwAcDgd2796NJ598Uj52+PDh+Pjjj6HRaKBSqXD77beD47go8QEAzz77LF5++WW89957yMzMDNsXKgpmz54Nm80WFVoXKnp9Ph+WLFmC//u//+vwNUu88sorWL58OdRqddLHdJVLLrkEDz30EL777juMHz++x5+PIAgiFpQDQhDEgGTs2LEARGNfIlEOyPfff49f/epXmDRpEubNm4cXXnghbP/tt9+Os88+O+7z8TyPQ4cO4YYbboDH48EXX3yBsWPHIi0tDTqdDvX19TAYDDAYDNBqtQAAvV6PtLQ02bB88MEHo1bIKyoqsH79+rCqWDzP4+yzz8bGjRuj5lFYWBjmASksLAzb39TUhFtvvRUzZ87E6aefjltuuSUqMbqoqAi7du3Cjh07sGTJElxzzTVxX/fWrVsxYcKEsMRolmVx3XXX4dVXX8XXX3+N6667Lu575na70dTU1OFfQ0ODHKrl9XpRU1ODGTNmID8/HwcPHkRlZSW2bduGyy67DDU1NWhra5OfZ8eOHUhNTcUZZ5whb1Or1RgxYgSys7NRUVGBXbt24Y9//CMcDge+//77sHmuXLkSBoMhKhH+s88+Q0lJCXJzc+VzPvvss9i7dy9KSkrkv0OHDmHfvn3YvXs35s6d22khcejQobjX3ooVK/Doo4+Gbfv973+P3//+96itrUVRURGef/55zJo1CxdddBG++eYbzJ07F7Nnz8ahQ4eizqdSqTBr1qxeF60EQRChkAeEIIgBiclkAgC0trZ2ONZqteKqq67CzJkz8cwzz6CsrAwbNmyAwWDAkiVLAMRegQ8lJSUFzz77LK644gqsWbMGbrdbNhr/8Y9/oKSkJGH+ySeffIJ3330X99xzD+655x55u8fjwb///W+ce+658ur8sWPHUF9fj1GjRkWdZ8yYMXj99ddx8uRJlJaWRiXMr127FtXV1di4cSMUCgXuv/9+PPjgg9iwYUPYuP/85z/Ytm0bli5dinHjxsWc8zfffIPf//73uPfee6NCpC666CI88MADGD9+fMzQJUAsKXvgwAH85z//ifu+hJKXl4ePPvoIJ0+
"text/html": [
"\n",
" <div style=\"display: inline-block;\">\n",
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
" Figure\n",
" </div>\n",
" <img src='
" </div>\n",
" "
],
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"BC_X = pd.concat([AlignMarkX[i]-AlignMarkX[i].mean() for i in AlignMarkX.columns[-4:]],axis=1)\n",
"BC_X.plot(marker='o')\n",
"plt.title('Die1对位MarkX局部补偿um')"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "c8f85626-8763-49b3-a9ee-61d8d0fa4f9d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 1.0, 'Die1对位MarkX局部补偿um')"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "49898e87da8f4625a47455908abae5d7",
"version_major": 2,
"version_minor": 0
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAImCAYAAACrXu7BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeZwT9f3/XzPJ5N7dZO+F3eXeRQG5RShVEDypFqpgrWetRW21VqxYbevxrRe09NdWxaNeLWhFRdEKVNTiVUHlElDZE2QX9t5NNncyk/n9MZlJJtdmlz3L+/l48GAzVz5JPpm8X5/3xYiiKIIgCIIgCIIgCKIfYAd6AARBEARBEARBnDyQACEIgiAIgiAIot8gAUIQBEEQBEEQRL9BAoQgCIIgCIIgiH6DBAhBEARBEARBEP0GCRCCIAiCIAiCIPoNEiAEQRAEQRAEQfQbJEAIgiAIgiAIgug3SIAQBEEQBEEQBNFvkAAhCIIgCIIgCKLfIAFCEARBEARBEES/QQKEIAiCIAiCIIh+gwQIQRAEQRAEQRD9BgkQgiAIgiAIgiD6DRIgBEEQBEEQBEH0GyRACIIgCIIgCILoN0iAEARBEARBEATRb5AAIQiCIAiCIAii3yABQhAEQRAEQRBEv0EChCAIgiAIgiCIfoMECEEQBEEQBEEQ/QYJEIIgCIIgCIIg+g0SIARBEARBEARB9BskQAiCIAiCIAiC6DdIgBAEQRAEQRAE0W+QACEIgiAIgiAIot8gAUIQBEEQBEEQRL9BAoQgCIIgCIIgiH6DBAhBEARBEARBEP0GCRCCIAiCIAiCIPoNEiAEQRAEQRAEQfQbJEAIgiAIgiAIgug3SIAQBEEQBEEQBNFvkAAhCIIgCIIgCKLfIAFCEARBEARBEES/QQKEIAiCIAiCIIh+gwQIQRAEQRAEQRD9BgkQgiAIgiAIgiD6DRIgBEEQBEEQBEH0GyRACIIgCIIgCILoN0iAEARBEARBEATRb5AAIQiCIAiCIAii3yABQhAEQRAEQRBEv0EChCAIopf58ssvcfnll6O+vj7hfq/Xi1AoFLfd5XJBFMW+Hl6/0d7ejsbGxrT+dXR0JL3OoUOHEAgEejwOQRDgcrl6fD4A1NXVndD56WK32/tkDqR6fwmCIPobEiAEQRB9wJ49e5Iakhs2bMCFF16I2tpaZVtHRwfOPfdcvP766/01xD7ntttuw1lnnZXWv9/+9rcJrxEIBPDzn/8cDz74YI/H8dvf/hY333xz3PZ77rkHl19+eZfnHz9+HAsXLsT27dtx5MgRCIIAAPjb3/6Giy++WDlu//79aG9v7/E4jx07hmXLluG9997r8TUSIYoirr76avztb3/r1esSBEH0FBIgBEEMej777DOUl5ejvLwcU6dOxaWXXopXX3016XEnwquvvoqrrroqbvuhQ4fw3HPPYd26dVi/fr3yb9euXXHHGo1GAADDMAmf4/3330coFMLIkSOVbTabDWeddRb+9Kc/wel0Jjzv7LPPRnl5Ob766isAkmE5bdo0lJeXJ/W2dJfXX38dZ599dtL9H3zwAcrLy/HFF18o29avX49TTz01zkvAcRyWLFmCioqKlP9++tOfQq/Xq86tq6tDZWUl6urqcMUVV2Dz5s3Yu3cvqqqqcOjQIbhcLmVORP/bsWNH3JiXL1+OXbt24YMPPlBtD4VCCAaDXb4nH374IYqKijB37lzceOONWLVqFQCAZVnlM/Z4PLj11lvxxBNPdHm9RLS3t+PKK6/ERRddhHPOOadH10gGwzD461//ig0bNuD555/v1WsTBEH0BO1AD4AgCCJd/vjHP8JqtWLTpk347W9/i8bGRtxyyy3K/gkTJuC1117r8fV37dqF3//+95g8eXLcvs7OThw6dAharVYxOv/zn//g+uuvx8SJE6HT6cCy6jUdURTh9/uh0Wig1Uq32yNHjuCLL77AihUr4Pf7cfjwYcX4PvfccwEAtbW1sFgsAKTwocLCQmRmZirXPXToECZMmID6+nq43e4ev96eMG/ePJx66qn4xz/+gZkzZ0IURaxbtw7f+973UFJSojpWq9XC5/OhpaUl5TW9Xm+ct+jPf/4z3n//fcXIZxgGP/nJTxAMBqHT6RQBtHr1asyZMwfr16/Hyy+/jJkzZwKQxIXH44Fer8eoUaOwefNmjBgxQvUcRqNREYup2LhxIy699FJwHIf7778f1157LU4//XRoNBpoNBoAwP3334/MzEz86le/6vJ6sYiiiDvvvBMLFy5UzefeZNSoUXj22WexbNkyTJs2LeEcJwiC6C9IgBAEMWQYO3YsTjnlFHz3u9+F3+/HU089hR/96EfIyckBAFgsFkyaNKlH196+fTtWrFiBMWPGJNx/+umn4/TTT1dtmzVrFjIzM5MacwsXLgQgheqceeaZAIB169ZBFEUsWLAA3377LZYtWxYnXt59913lb57n8cc//lG5FgBUVFQAkITIQHDDDTdgxYoVOHbsGKqqqvDtt99i7dq1ccexLIutW7di69atXV4z+vUBwJo1a7Bx40bU1dXhl7/8JQBg27ZtuP/++/H666+DZVkYjUZkZmYiLy8P+/fvx4IFCxShd/jwYVx44YVxz/OPf/wDs2bNUm3zer2ora3FhAkT4o7fu3cvDhw4oHjFZs2ahb/85S/4zne+gw0bNijHnX322bjpppviPDnp8MEHH+DYsWN4/PHHu31udxgxYgRWrlyJhx56SDV2giCI/oYECEEQQ5LLLrsM7777Lj7++GMsXrz4hK/3+eef489//jP279+Pzz//PG6/1+vFmjVrcMsttyArKwvHjh2Dw+HAggULMHv2bGRkZCjGb01NDZYuXYp//etfyM3NVbwZzc3NiofGbDajsLAQBw8e7NY4p06dqgiPiooKTJ48GV9++eWJvPRuc+6552LEiBF48cUXcejQIZx77rlJhdvixYvTyt+I9R4BkgflySefxNlnn43TTjsN77zzDsaPH4+CggJlPwC43W588cUXePLJJ5VzS0pK8O6770Kv14PjONxxxx0IBAJx4gMAnn32Wbz44ot46623kJeXp9oXLQrmzp0Lu90eF1oXLXp5nsfSpUvxf//3f12+ZpmXXnoJV1xxBXQ6Xdrn9JSLL74Ya9aswddff41TTz21z5+PIAgiEZQDQhDEkGT8+PEAJGNfJlUOyDfffIOrr74ap512GhYsWIAXXnhBtf+OO+7AWWedlfT5BEHA/v37cdNNN8Hv9+Pjjz/G+PHjkZ2dDaPRiMbGRpjNZpjNZhgMBgCAyWRCdna2Ylj+8Y9/jFshr66uxoMPPqiqiiUIAs466yysXr06bhxlZWUqD0hZWZlqf2trK2677TbMmjULp59+Om699da4xOjy8nJ89tln2L59O5YuXYrrrrsu6evesmULJk6cqEqMZlkWN9xwA/75z3/i008/xQ033JD0PfP5fGhtbe3yX3NzsxKqFQwGUVdXh5kzZ2LMmDH48ssvUVNTg23btuHSSy9FXV0dOjs7lefZvn07MjIycMYZZyjbdDodSktLUVBQgOrqanz22Wf47W9/C7fbjW+++UY1zuuvvx5mszkuEf7DDz/EgQMHUFRUpFzz2Wefxe7du3HgwAHl3/79+7Fnzx588cUXmD9/freFxP79+5POvauuugqPPvqoatuvf/1r/PrXv0Z9fT3Ky8vx/PPPY/bs2fje976HHTt2YP78+Zg7dy72798fdz2O4zB79ux+F60EQRDRkAeEIIghSVZWFgDA4XB0eWxHRweuvfZazJo1C8888wwqKyvx0EMPwWw2Y+nSpQASr8BHY7FY8Oyzz+LKK6/EihUr4PP5FKPxsccew4EDB1Lmn7z33nt48803cd999+G+++5Ttvv9fvzjH//AwoULldX5w4cPo7GxEaNGjYq7zrhx4/DKK6+gqakJFRUVcQnzK1euxJEjR7B69WpoNBo88sgj+OMf/4iHHnpIddy///1vbNu2DcuWLcMpp5yScMw7duzAr3/9azzwwANxIVLf+973sGrVKpx66qkJQ5cAqaTsvn378O9//zv
"text/html": [
"\n",
" <div style=\"display: inline-block;\">\n",
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
" Figure\n",
" </div>\n",
" <img src='
" </div>\n",
" "
],
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"BC_X = BC_X.where(abs(BC_X)<1, np.nan)\n",
"BC_X.plot(marker='o')\n",
"plt.title('Die1对位MarkX局部补偿um')"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "61ce5e50-3b7b-4b70-8917-cc6bac2a1ced",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 1.0, 'Die1对位MarkYum')"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4ab09376ef2f414f9ed7c5457ac331eb",
"version_major": 2,
"version_minor": 0
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAImCAYAAACrXu7BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZgcZbU/8G9VV+/T26yZbGSdSUhCQgJhMUACGAIRDEqCCIhykUURL4ig3KvIlUVR/HkVoiBw9YaLskkQCIJo2JSwJCEbZCaTyUommclM73tVvb8/aunqbaYn6Z4t5/M8PGRqqqurp7f31DnnfTnGGAMhhBBCCCGEDAB+sE+AEEIIIYQQcuygAIQQQgghhBAyYCgAIYQQQgghhAwYCkAIIYQQQgghA4YCEEIIIYQQQsiAoQCEEEIIIYQQMmAoACGEEEIIIYQMGApACCGEEEIIIQOGAhBCCCGEEELIgKEAhBBCCCGEEDJgKAAhhBBCCCGEDBgKQAghhBBCCCEDhgIQQgghhBBCyIChAIQQQgghhBAyYCgAIYQQQgghhAwYCkAIIYQQQgghA4YCEEIIIYQQQsiAoQCEEEIIIYQQMmAoACGEEEIIIYQMGApACCGEEEIIIQOGAhBCCCGEEELIgKEAhBBCCCGEEDJgKAAhhBBCCCGEDBgKQAghhBBCCCEDhgIQQgghhBBCyIChAIQQQgghhBAyYCgAIYQQQgghhAwYCkAIIYQQQgghA4YCEEIIIYQQQsiAoQCEEEIIIYQQMmAoACGEEEIIIYQMGApACCGEEEIIIQOGAhBCCCGEEELIgKEAhBBCCCGEEDJgKAAhhBBCCCGEDBgKQAghhBBCCCEDhgIQQgghhBBCyIChAIQQQgghhBAyYCgAIYQQQgghhAwYCkAIIYQQQgghA4YCEEIIIYQQQsiAoQCEEEIIIYQQMmAoACGEEEIIIYQMGApACCFkhNq0aRMuu+wy7N+/v+Dv4/E4ZFnO2x6JRMAYq/TpDUl+v7/sx2SMIRgMlv24hBAyXFEAQgghI9iGDRuKBhNPPfUULrjgArS3t+vb/H4/Fi9ejD//+c8DdYpDxm9+8xt89atfLXvw9corr2DFihXo6Ogo63EJIWS4ogCEEEJK9N5776G5uRnNzc048cQTcckll+CZZ54put/ReOaZZ3DllVfmbd++fTsef/xxrFq1Ck888YT+34cffpi3r91uBwBwHFfwPv7+979DlmVMmDBB3+bz+XDWWWfhF7/4BcLhcMHbnX322Whubsa2bdsAKFf4586di+bm5qLZlv7685//jLPPPrvo7++66y6cddZZEEVR3xaPxzF//nz8+te/7vf9PfLII3j++efxq1/9qujf60hdcMEFWLJkCa644oqKZFgIIWS4oQCEEEL66ec//zl+9atf4bjjjsN//ud/5g14Z8yYgWefffaIj//hhx/ixz/+ccHfhUIhbN++HZ988on+30MPPYRNmzYhkUgULKlijCGZTGYN1nfv3o0PPvgAl1xyCZLJJD7++GPs3LkTO3fuxOLFi3HmmWeivb1d39ba2opQKJR13O3btwMA9u/fj2g0esSP90hcffXV6Orqwquvvqpve/7555FKpXD55Zf361jr16/H448/jsceewzHHXdcuU8VAHDzzTfjjDPOwPe///2KHJ8QQoYTYbBPgBBChpspU6Zg+vTpOOOMM5BMJvHwww/jy1/+MmpqagAAVVVVmDVr1hEde+3atbjlllswefLkgr+fP38+5s+fn7XtlFNOgdvtxuzZswve5txzzwUA/O53v8OZZ54JAFi1ahUYYzjnnHOwZ88erFixAhaLBTyfuS71t7/9Tf+3KIr4+c9/rh8LAFpaWgBkApGBNG7cOCxZsgR/+MMfsHTpUjDGsGrVKnzhC19AdXV1v451zz334Pvf/z7GjRtXobNV3HHHHbjwwgvx9ttv44wzzqjofRFCyFBGAQghhByFSy+9FH/729/w9ttvY9myZUd9vPfffx+//OUvsXnzZrz//vt5v4/H43jggQfwrW99Cx6PB59++imCwSDOOeccnHbaaXC5XBAE5aN9586dWL58OV588UXU1taiqqoKANDZ2alnaJxOJ0aNGoWtW7f26zxPPPFEPfBoaWnB7NmzsWnTpqN56P329a9/HcuWLcPGjRsRCoWwZ88ePPLII/06xubNm9HZ2YmlS5dW6CwzLBYLLrvsMjz55JMUgBBCjmlUgkUIIUdh2rRpAJTBvqa3HpBPPvkEX/nKV3DCCSfgnHPOwe9///us33/3u9/FWWedVfT+JEnC5s2bccMNNyCZTOLtt9/GtGnTUF1dDbvdjoMHD8LpdMLpdMJmswEAHA4HqqurYbFYACglZFarNeu4bW1tuOeee7JKuCRJwllnnYX7778/7zyampqyMiBNTU1Zvz98+DBuvvlmnHLKKZg/fz6+/e1vo6enJ2uf5uZmvPfee1i7di2WL1+Oq6++uujjXrNmDWbOnInXX39d3zZ9+nQsWLAAf/jDH/CHP/wBS5Ys6XcWY9OmTViwYIEetBkVeh7379+v97p873vfw0033YTrr78es2fPxhNPPIEf/vCHmD17Nm6//faC97dw4UJs3ry5X+dICCEjDQUghBByFDweDwCUNM2q3+/HV7/6VXi9Xjz66KP42te+hvvvvz+rkd1YAlVIVVUVHnvsMUSjUdxyyy3429/+pgcsDz74IP7jP/6j19u//vrreOGFF3DzzTdnbU8mk/jf//1ffPDBB/q2Xbt24eDBg5g4cWLecaZOnYpgMIhDhw6hpaUlLwC57bbbsGnTJtx///34xS9+gZ07d+LnP/953nH++te/4j//8z+xYMECfOlLXyp4zu+++y6+973v4e67784qAQOAa665Bq+++ir+9a9/4Zprrun1sRdy4MABNDQ09Pt2mtdffx1nn302Fi9ejB//+McQBAE333wzVq9enRdwAUBDQwMOHz6MVCp1xPdJCCHDHZVgEULIUejPjElPPPEEeJ7HAw88ALPZjPnz5+O9997DCy+8gOXLl5d8HJfLhYcffhjLly9HZ2enfrX9uuuuw+LFi/Haa69h8eLFBW87Z84cXH311XklQDNmzEBTUxNefvllnHLKKQCArVu3guO4grNROZ1OjB49Ghs2bMC+ffvyMgVLlizB9OnT9V6Y0047Df/85z/zjrNmzRo8/fTTRZu/t23bhm9+85u44YYbCpa4nXbaaZg8eTJcLheOP/74gsfojcViOaoG+lNPPRUrVqyAyWTC66+/ju9///s4ePAg7rvvPsRisbx+lEgkAp7nC2ZcCCHkWEEZEEIIOQrazFBaJqQ3ra2t6OnpwcyZM/XpfF977TXs3r273/c7atQonHTSSQCg337UqFFYunQpHnrooaJrWdTW1hYtD7rwwgvx6quv6mVYmzZtwowZM/Tm+lxNTU34y1/+AofDgdGjR2f97oILLsCmTZtw4403YsGCBVi1ahUSiUTeMf7t3/6taPARDofx9a9/HQ6HQy/3KsTn88Hn8xX9fW8mTJjQ67Fz5f5d6+vrASiBqM/ng9ls7jUo3bFjB8aPH99nposQQkYy+gQkhJCj0NraCkCZGasUJ5xwAlavXp313+OPP97v+/3ggw/wt7/9DZdddhl+8IMfoKurCwDw5S9/GcuXLy84HW9fFi5ciEAgoPcofPjhh1iwYEHR/Zubm/GPf/wDTU1NWYPuSCSCiy++GE899RRmz56N+++/Hz/60Y8KHqPYzF2AEtx97nOfw+OPP47XXnsN69ev7/dj6suCBQuwceNG7Nmzp6T9j3YxwWeffbbXHh9CCDkWUABCCCFH4emnn4bVai1pUDl16lR0dHRg8uTJmD59OqZPn45du3bhT3/6U7/us6enB9/97ndx7bXX4oc//CEmTpyIH/zgBwCAWbNm4YorroDJZOr3Y2lqakJ9fT3eeust9PT0YMeOHTj99NN73d/4f826deuwd+9erFy5El//+tdx+umnH9EChQ0NDbjjjjvQ1NSEiy66CPfdd1/ZVymvq6vD0qVL8ZOf/CTvd9r
"text/html": [
"\n",
" <div style=\"display: inline-block;\">\n",
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
" Figure\n",
" </div>\n",
" <img src='
" </div>\n",
" "
],
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"BC_Y = pd.concat([AlignMarkY[i]-AlignMarkY[i].mean() for i in AlignMarkY.columns[-4:]],axis=1)\n",
"BC_Y.plot(marker='o')\n",
"plt.title('Die1对位MarkYum')"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "ac86dfdd-f506-4ac7-9590-c563900d70df",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 1.0, 'Die1对位MarkY局部补偿um')"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ca77619fb9984fdbb286338e78b1ec9a",
"version_major": 2,
"version_minor": 0
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAImCAYAAACrXu7BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeXwU9f3/XzOzs2eS3ZwQOeQIBArIpSiWKghFlGqhin6tR621VKvWilVb23r86klLv7ZVq361arFabzzASr21FZQbVHJwSIBAEpLsfc7M7485dmavbMLu5uD9fDx4kJ35zMxnd67P6/O+GEmSJBAEQRAEQRAEQRQAtrc7QBAEQRAEQRDEsQMJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgCIIgCIIgCgYJEIIgiByzdetWXHTRRdi/f3/K9cFgEKIoJi33+XyQJCnf3SsY7e3tOHToUFb/Ojo60u5n586diEQiPe6HIAjw+Xw93h4Ampqajmr7bOns7MzLNZDp9yUIgig0JEAIgiDywKZNm9IOJJ9//nmcffbZ2L17t7aso6MD8+fPxyuvvFKoLuadG264AaeffnpW/37zm9+k3EckEsE111yDu+++u8f9+M1vfoNrr702afltt92Giy66qMvtDx48iHnz5uH999/H3r17IQgCAOD//u//cO6552rttm3bhvb29h7388CBA7jgggvwzjvv9HgfqZAkCZdddhn+7//+L6f7JQiC6CkkQAiC6POsX78etbW1qK2txdSpU3H++efjxRdfTNvuaHjxxRdx6aWXJi3fuXMn/va3v2HlypV45plntH8bNmxIamuz2QAADMOkPMa7774LURQxYsQIbVlpaSlOP/10/PGPf4TX60253RlnnIHa2lp88cUXAOSB5bRp01BbW5vW2tJdXnnlFZxxxhlp19955504/fTTEYvFtGXBYBAzZszAX/7yF0NbnuexePFi1NXVZfz34x//GBaLxbBtU1MT6uvr0dTUhIsvvhirV6/G5s2b0dDQgJ07d8Ln82nXhP7fp59+mtTnpUuXYsOGDfjggw8My0VRRDQa7fI3+fDDD1FdXY1Zs2bhqquuwv333w8AYFlWO8eBQADXX389/vrXv3a5v1S0t7fjkksuwTnnnINvf/vbPdpHOhiGwZ///Gc8//zzePLJJ3O6b4IgiJ5g6u0OEARBZMsf/vAHuFwurFq1Cr/5zW9w6NAhXHfdddr6CRMm4KWXXurx/jds2IDf/e53mDx5ctI6j8eDnTt3wmQyaYPO9957D1deeSUmTpwIs9kMljXO6UiShHA4DI7jYDLJj9u9e/fi888/x7JlyxAOh7Fnzx5t8D1//nwAwO7du1FUVARAdh8aPHgwSkpKtP3u3LkTEyZMwP79++H3+3v8fXvCFVdcgeeffx5vv/02Fi5cCAB49dVXEYlEcPHFFxvamkwmhEIhtLa2ZtxnMBhMshY98MADePfdd7VBPsMw+NGPfoRoNAqz2YzPP/8cALB8+XKceuqpeOaZZ/DPf/4TJ510EgBZXAQCAVgsFowcORKrV6/G8ccfbziGzWbTxGImXn75ZZx//vngeR533nknLr/8csyYMQMcx4HjOACyMCspKcEvfvGLLveXiCRJuOWWWzBv3jzD9ZxLRo4ciSeeeAIXXHABpk2blvIaJwiCKBQkQAiC6DfU1NRg/Pjx+Na3voVwOIxHH30U3//+91FeXg4AKCoqwqRJk3q07/fffx/Lli3D6NGjU66fMWMGZsyYYVh28skno6SkJO1gbt68eQBkV53TTjsNALBy5UpIkoS5c+fi66+/xgUXXJAkXv79739rf8diMfzhD3/Q9gUAdXV1AGQhUmiGDRuGBQsW4Omnn8bChQshSRJWrlyJ733veygrKzO0ZVkWb731Ft56660u96v/fgCwYsUKvPzyy2hqasLPf/5zAMDatWtx55134pVXXgHLsrDZbCgpKUFlZSW2bduGuXPnakJvz549OPvss5OO8/e//x0nn3yyYVkwGMTu3bsxYcKEpPabN2/G9u3bNavYySefjD/96U/45je/ieeff15rd8YZZ+Dqq69OsuRkwwcffIADBw7goYce6va23eH444/HzTffjHvuucfQd4IgiEJDAoQgiH7JhRdeiH//+9/4+OOPsWjRoqPe32effYYHHngA27Ztw2effZa0PhgMYsWKFbjuuuvgdDpx4MABuN1uzJ07FzNnzkRxcbE2+N21axeWLFmCN954AxUVFZo1o6WlRbPQOBwODB48GDt27OhWP6dOnaoJj7q6OkyePBlbt249mq/ebX784x9j0aJF2Lx5MzweD77++ms89thjKdsuWrQoq/iNROsRIFtQHnnkEZxxxhk44YQT8Pbbb2PcuHEYNGiQth4A/H4/Pv/8czzyyCPatsOGDcO///1vWCwW8DyPm266CZFIJEl8AMATTzyBf/zjH3j99ddRWVlpWKcXBbNmzUJnZ2eSa51e9MZiMSxZsgT/7//9vy6/s8qzzz6Liy++GGazOettesq5556LFStW4Msvv8Q3vvGNvB+PIAgiFRQDQhBEv2TcuHEA5MG+SqYYkK+++gqXXXYZTjjhBMydOxdPPfWUYf1NN92E008/Pe3xBEHAtm3bcPXVVyMcDuPjjz/GuHHjUFZWBpvNhkOHDsHhcMDhcMBqtQIA7HY7ysrKtIHlH/7wh6QZ8sbGRtx9992GrFiCIOD000/H8uXLk/oxduxYgwVk7NixhvVtbW244YYbcPLJJ2PGjBm4/vrrkwKja2trsX79erz//vtYsmQJrrjiirTfe82aNZg4caIhMHr8+PGYNWsWnn76aTz99NNYsGABhg0blvI3C4VCaGtr6/JfS0uL5qoVjUbR1NSEk046CaNHj8bWrVuxa9curF27Fueffz6amprg8Xi047z//vsoLi7GKaecoi0zm80YPnw4Bg0ahMbGRqxfvx6/+c1v4Pf78dVXXxn6eeWVV8LhcCQFwn/44YfYvn07qqurtX0+8cQT2LhxI7Zv367927ZtGzZt2oTPP/8cc+bM6baQ2LZtW9pr79JLL02KrfnlL3+JX/7yl9i/fz9qa2vx5JNPYubMmfjOd76DTz/9FHPmzMGsWbOwbdu2pP3xPI+ZM2cWXLQSBEHoIQsIQRD9EqfTCQBwu91dtu3o6MDll1+Ok08+GY8//jjq6+txzz33wOFwYMmSJQBSz8DrKSoqwhNPPIFLLrkEy5YtQygU0gaNDz74ILZv354x/uSdd97Ba6+9hjvuuAN33HGHtjwcDuPvf/875s2bp83O79mzB4cOHcLIkSOT9jNmzBi88MILOHz4MOrq6pIC5m+++Wbs3bsXy5cvB8dxuO+++/CHP/wB99xzj6Hdv/71L6xduxYXXHABxo8fn7LPn376KX75y1/irrvuSnKRuvLKK3H
"text/html": [
"\n",
" <div style=\"display: inline-block;\">\n",
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
" Figure\n",
" </div>\n",
" <img src='
" </div>\n",
" "
],
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"BC_Y = BC_Y.where(abs(BC_Y)<1, np.nan)\n",
"BC_Y.plot(marker='o')\n",
"plt.title('Die1对位MarkY局部补偿um')"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "a94845fc-49f0-41a1-99a0-b5f5cdff1a69",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 1.0, 'Die1角度°')"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bad88ad20d564793843212f3d51e7ae0",
"version_major": 2,
"version_minor": 0
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAImCAYAAACrXu7BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZwcdZ3//6q+72Nmeq7MTCaZI/cNIUCUQ1jlUGGBZT1Yjy+Lou53dz1w9ffd9euqX5VdV3d1RRRlFbwAuRSUWyRIEhIScmeOZK7M1TN9391V9fujuqqruqu6q3u6eybM5/l48CBTXV1dXV3H5/15v1+vN8WyLAsCgUAgEAgEAoFAqAOaxd4BAoFAIBAIBAKBsHwgAQiBQCAQCAQCgUCoGyQAIRAIBAKBQCAQCHWDBCAEAoFAIBAIBAKhbpAAhEAgEAgEAoFAINQNEoAQCAQCgUAgEAiEukECEAKBQCAQCAQCgVA3SABCIBAIBAKBQCAQ6gYJQAgEAoFAIBAIBELdIAEIgUAgEAgEAoFAqBskACEQCAQCgUAgEAh1gwQgBAKBQCAQCAQCoW6QAIRAIBAIBAKBQCDUDRKAEAgEAoFAIBAIhLpBAhACgUAgEAgEAoFQN0gAQiAQCAQCgUAgEOoGCUAIBAKBQCAQCARC3SABCIFAIBAIBAKBQKgbJAAhEAgEAoFAIBAIdYMEIAQCgUAgEAgEAqFukACEQCAQCAQCgUAg1A0SgBAIBAKBQCAQCIS6QQIQAoFAIBAIBAKBUDdIAEIgEAgEAoFAIBDqBglACAQCgUAgEAgEQt0gAQiBQCAQCAQCgUCoGyQAIRAIBAKBQCAQCHWDBCAEAoFAIBAIBAKhbpAAhEAgEAgEAoFAINQNEoAQCAQCgUAgEAiEukECEAKBQCAQCAQCgVA3SABCIBAIBAKBQCAQ6gYJQAgEAoFAIBAIBELdIAEIgUAgEAgEAoFAqBskACEQCAQCgUAgEAh1gwQgBAKBQCAQCAQCoW6QAIRAIBAIBAKBQCDUDRKAEAgEAoFAIBAIhLpBAhACgUAgEAgEAoFQN0gAQiAQCAQCgUAgEOoGCUAIBAKBQCAQCARC3SABCIFAIBAIBAKBQKgbJAAhEAgEAoFAIBAIdYMEIAQCgUCQkEqlcPvtt+ONN95Y8LbOnDmDD3/4w5idna3Cnknx+/1V32Ytt0sgEAgEDhKAEAgEAkHC97//fQwPD6O7u3vB22pra8Obb76JRx55RFjGsiySySTi8XjF23311Vfxrne9qyCwyWQyeOihh/Cd73wHk5OTZW93enoa73rXu/Daa69VvG8EAoFAKA7Fsiy72DtBIBAIy5V9+/bhb/7mbwAAFosFPT09uPXWW3HLLbfIrnf69OmKP+vhhx/Gk08+iQceeEBxnT//+c+4/fbbQdO07Ov/9E//hI985COyr73zne/EyMiI6v259tpr8e1vf1v1+jyvv/46PvWpT+Gb3/wmLr/8cslr3/rWt2C32/H2t78d//mf/4l77rmn7O2/8MIL+OIXv4h77rkH27dvL/v9BAKBQCiObrF3gEAgEAjAv//7v8PlcuHxxx/H//k//wfT09P4u7/7O+H1DRs2SLII5XLgwAF85StfwZYtWxTXOXToEP7+7/8en//85/HXf/3Xktf+7u/+DpFIBB/60IcU36/X63HXXXfhgx/8IADgRz/6EZqbm/He974XAJed+OQnP4k777wT69evB0VRZX8Pv9+Pz372s/jqV79aEHwAwODgIL7//e9Do9HAbreXvX0AeMc73oEvfelL+MxnPoPHH38cTqezou0QCAQCQR5SgkUgEAhLgN7eXrztbW/Dt771LVx99dW49957MT8/L7xus9mwadOmirb90ksv4W//9m/R09OjuM4jjzyCD3/4w7jppptw8803I5PJCP+98soreO211/DP//zPiMfjiEajSCQSBdugKAp6vR4Mw0Cn0+HYsWMYHh6G0WiE0WiE1WrF3r17kclkYDabodfry/4uP/zhD7F7925cffXVsq9fccUV+Jd/+Rfcf//90Gq1ZW+f59prr8XOnTtx3333VbwNAoFAIMhDMiAEAoGwxLj11lvx3HPP4ZVXXsENN9yw4O3t378f3/nOd3DkyBHs37+/4PWXXnoJ//zP/4zt27fj/vvvx/333y+7HfG+bNq0STYjo9FocMkllyCZTIJlWVAUhV/84hfC6yzL4o477gDDMLjkkkvw4x//WPX3SKVS+M1vfoOf//zniuvceuut2LhxIwKBAG677TbV25bjIx/5CD784Q/jf//v/11RsEQgEAgEeUgAQiAQCEuMtWvXAgCGh4eFZcU0ICdPnsTXv/51HD58GB6PB7fddhs+/OEPC69/7nOfg0ajwZEjR2Q/74orrsCTTz6JU6dO4dy5c3jyySeF17761a+Cpml86UtfEpb9+Mc/xuuvv16wHZZlodVqsW/fPhgMBnz84x/HqlWr8PnPf15YZ/369fjJT36Ciy66COl0Wv1BAXD27FnYbDb09fUVXW/Dhg1lbVeJtWvXQq/XY2xsrGj2iEAgEAjlQUqwCAQCYYnBaw6CwWDJdf1+Pz784Q/D5XLhvvvuw0c+8hHcfffdePjhh4V1NJrSt/q+vj4wDAOKoqDVaoX/NBqN7DK58qZEIgG9Xg+DwQAAYBgG6XQa0WhU+I9fDqDsrMLU1BSam5vLes9CaWlpwdTUVF0/k0AgEN7qkAwIgUAgLDHKEWc/+OCD0Gg0+Na3vgW9Xo+dO3di3759eOKJJwqctEqRSCQwOTkp6/z029/+VvL3zp07Zd8vFmzH43E88MADBa5bqVSqrP3i0ev1QhBTLyKRCCm/IhAIhCpDAhACgUBYYoRCIQBQ5b40MDAAn8+HjRs3SpZ7PJ6yPzcQCGDr1q349a9/LSz7//6//w80TeMb3/iGsOz73/++bJ+MaDQKj8eDSCSCdDqNe+65RzGYymQy0OnKewR1d3djbGwMyWQSRqOxrPdWQjwex8TERFX6oRAIBAIhBwlACAQCYYkxMDAAgHPGUsPmzZvxr//6r5JllThAnT17FlarVZJloGkamUxGskxOuxEMBhGLxeDxePDd734XDz30EBKJBEwmk1CSBXBBitlsxh/+8Ac0NjaWtX8rVqxAZ2cnfvvb3+Lmm28u+/uVyxNPPIHe3l60tLTU/LMIBAJhOUECEAKBQFhiPPTQQzAajbjssstKrtvX14dDhw6hp6dHGOg//fTTOHDgAP7lX/6lrM89cuQIhoeHKyrBGh0dhVarhcfjwRe+8AV84QtfwH/9139h7969+NnPfgadTofh4WHccsst+PKXv1x28MHzkY98BP/93/+Nq6++uqb9Ofx+P+655x58+tOfrtlnEAgEwnKFiNAJBAJhCTA0NIRXX30Vd911F55++ml87nOfg8vlKvm+D37wg0ilUvjHf/xHvPbaa/jd736HL3/5y6qE52KOHj2K4eFhfPe738Xp06eF/26++WbceOONkmV///d/X/D+vXv3Yu3atZJsx5133ol0Oo1/+qd/wvj4OD7xiU/gfe97H6699tqy9k3MX/7lX6Krqwuf+9znKtaSlCKZTOKzn/0sent78Z73vKcmn0EgEAjLGRKAEAgEwhLgs5/9LD75yU9ifHwc//3f/626h0VDQwP+53/+B+FwGB/72MfwzW9+EzfffDPuuusu1Z+dTqfxta99DV1dXbjyyislryUSCbAsK/zNsix8Pl9BgPPMM8/goosukizT6/X43ve+h1deeQXXXHMNVq9ejc9+9rOq90sOiqLwne98B7Ozs/joRz+KSCSyoO3lE4lE8OEPfxh+vx/f/va3K+rWTiAQCITiUKz4yUIgEAiEZcdjjz2Gf/7nf8b//M//4IILLpC8dscdd8BsNuM///M/ceDAAdx2222gKAp33XWX0Gtk//79uO222/DEE0/A6XRidnYWAwMDeP311/Hyyy+js7MTq1evxnPPPQe3240tW7agra0NDQ0N2LFjB7Zt21b2PkciETz44IP427/92wV1PM+Hpmn86Ec/wm233Qar1Vq
"text/html": [
"\n",
" <div style=\"display: inline-block;\">\n",
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
" Figure\n",
" </div>\n",
" <img src='
" </div>\n",
" "
],
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"Angle.iloc[:,-4:].plot(marker='o')\n",
"plt.title('Die1角度°')"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "b62b7df1",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>对位MarkX</th>\n",
" <th>对位MarkY</th>\n",
" <th>Angle</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Index</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>31</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>32</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>33</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>34</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>35</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>36</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>37</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>38</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>39</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>40</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>41</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>42</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>43</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>44</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>45</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>46</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>47</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>48</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>49</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>51</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>52</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>53</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>54</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>55</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>56</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>57</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>58</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>59</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>60</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>61</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>62</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>63</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>64</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>65</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>66</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>67</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>68</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>69</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>70</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>71</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>72</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>73</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>74</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>76</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>77</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>78</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>79</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>80</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>81</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>82</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>83</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>84</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>85</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>86</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>87</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 对位MarkX 对位MarkY Angle\n",
"Index \n",
"1 NaN NaN NaN\n",
"2 NaN NaN NaN\n",
"3 NaN NaN NaN\n",
"4 NaN NaN NaN\n",
"5 NaN NaN NaN\n",
"6 NaN NaN NaN\n",
"7 NaN NaN NaN\n",
"8 NaN NaN NaN\n",
"9 NaN NaN NaN\n",
"10 NaN NaN NaN\n",
"11 NaN NaN NaN\n",
"12 NaN NaN NaN\n",
"13 NaN NaN NaN\n",
"14 NaN NaN NaN\n",
"15 NaN NaN NaN\n",
"16 NaN NaN NaN\n",
"17 NaN NaN NaN\n",
"18 NaN NaN NaN\n",
"19 NaN NaN NaN\n",
"20 NaN NaN NaN\n",
"21 NaN NaN NaN\n",
"22 NaN NaN NaN\n",
"23 NaN NaN NaN\n",
"24 NaN NaN NaN\n",
"25 NaN NaN NaN\n",
"26 NaN NaN NaN\n",
"27 NaN NaN NaN\n",
"28 NaN NaN NaN\n",
"29 NaN NaN NaN\n",
"30 NaN NaN NaN\n",
"31 NaN NaN NaN\n",
"32 NaN NaN NaN\n",
"33 NaN NaN NaN\n",
"34 NaN NaN NaN\n",
"35 NaN NaN NaN\n",
"36 NaN NaN NaN\n",
"37 NaN NaN NaN\n",
"38 NaN NaN NaN\n",
"39 NaN NaN NaN\n",
"40 NaN NaN NaN\n",
"41 NaN NaN NaN\n",
"42 NaN NaN NaN\n",
"43 NaN NaN NaN\n",
"44 NaN NaN NaN\n",
"45 NaN NaN NaN\n",
"46 NaN NaN NaN\n",
"47 NaN NaN NaN\n",
"48 NaN NaN NaN\n",
"49 NaN NaN NaN\n",
"50 NaN NaN NaN\n",
"51 NaN NaN NaN\n",
"52 NaN NaN NaN\n",
"53 NaN NaN NaN\n",
"54 NaN NaN NaN\n",
"55 NaN NaN NaN\n",
"56 NaN NaN NaN\n",
"57 NaN NaN NaN\n",
"58 NaN NaN NaN\n",
"59 NaN NaN NaN\n",
"60 NaN NaN NaN\n",
"61 NaN NaN NaN\n",
"62 NaN NaN NaN\n",
"63 NaN NaN NaN\n",
"64 NaN NaN NaN\n",
"65 NaN NaN NaN\n",
"66 NaN NaN NaN\n",
"67 NaN NaN NaN\n",
"68 NaN NaN NaN\n",
"69 NaN NaN NaN\n",
"70 NaN NaN NaN\n",
"71 NaN NaN NaN\n",
"72 NaN NaN NaN\n",
"73 NaN NaN NaN\n",
"74 NaN NaN NaN\n",
"75 NaN NaN NaN\n",
"76 NaN NaN NaN\n",
"77 NaN NaN NaN\n",
"78 NaN NaN NaN\n",
"79 NaN NaN NaN\n",
"80 NaN NaN NaN\n",
"81 NaN NaN NaN\n",
"82 NaN NaN NaN\n",
"83 NaN NaN NaN\n",
"84 NaN NaN NaN\n",
"85 NaN NaN NaN\n",
"86 NaN NaN NaN\n",
"87 NaN NaN NaN"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"DieBC = pd.read_excel('SP-Die补偿模版.xlsx',index_col=0,header=0)\n",
"DieBC"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "f2ae7ed6-c025-4390-8bd1-4e3b82783c36",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>对位MarkX</th>\n",
" <th>对位MarkY</th>\n",
" <th>Angle</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Index</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>-0.152350</td>\n",
" <td>0.081269</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>-0.304979</td>\n",
" <td>-0.025812</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>-0.193479</td>\n",
" <td>0.192938</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>-0.223229</td>\n",
" <td>-0.100562</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>-0.201229</td>\n",
" <td>-0.215562</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>-0.408229</td>\n",
" <td>0.018938</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>-0.184229</td>\n",
" <td>0.241438</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>-0.495229</td>\n",
" <td>0.374688</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>-0.062729</td>\n",
" <td>-0.065312</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>0.007521</td>\n",
" <td>0.148188</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>-0.009729</td>\n",
" <td>-0.290812</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>-0.094479</td>\n",
" <td>-0.114812</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>0.010771</td>\n",
" <td>0.078938</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>-0.017479</td>\n",
" <td>-0.233562</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>-0.133604</td>\n",
" <td>-0.083937</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>-0.249729</td>\n",
" <td>0.065688</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>-0.323729</td>\n",
" <td>-0.177562</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>-0.173729</td>\n",
" <td>0.117938</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>-0.230229</td>\n",
" <td>-0.018312</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>-0.208979</td>\n",
" <td>-0.043812</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>-0.164729</td>\n",
" <td>-0.042562</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>-0.108979</td>\n",
" <td>0.027438</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>-0.039479</td>\n",
" <td>-0.216562</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>-0.294479</td>\n",
" <td>-0.471562</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>-0.074979</td>\n",
" <td>0.122438</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>-0.319479</td>\n",
" <td>-0.004562</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>-0.237479</td>\n",
" <td>0.135938</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>0.019021</td>\n",
" <td>0.390188</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>0.028771</td>\n",
" <td>0.334438</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>0.038521</td>\n",
" <td>0.278688</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>31</th>\n",
" <td>0.048271</td>\n",
" <td>0.222938</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>32</th>\n",
" <td>0.058021</td>\n",
" <td>0.167188</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>33</th>\n",
" <td>0.096771</td>\n",
" <td>-0.165562</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>34</th>\n",
" <td>0.119021</td>\n",
" <td>0.010688</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>35</th>\n",
" <td>0.166021</td>\n",
" <td>-0.203562</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>36</th>\n",
" <td>-0.510283</td>\n",
" <td>0.419602</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>37</th>\n",
" <td>-0.399479</td>\n",
" <td>0.175188</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>38</th>\n",
" <td>-0.036979</td>\n",
" <td>0.190688</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>39</th>\n",
" <td>-0.017479</td>\n",
" <td>0.310188</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>40</th>\n",
" <td>-0.003479</td>\n",
" <td>0.138688</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>41</th>\n",
" <td>0.072521</td>\n",
" <td>-0.108062</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>42</th>\n",
" <td>0.013021</td>\n",
" <td>0.123688</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>43</th>\n",
" <td>0.341021</td>\n",
" <td>0.055188</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>44</th>\n",
" <td>0.417271</td>\n",
" <td>0.034188</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>45</th>\n",
" <td>0.196771</td>\n",
" <td>0.288938</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>46</th>\n",
" <td>0.159021</td>\n",
" <td>-0.086562</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>47</th>\n",
" <td>-0.068979</td>\n",
" <td>0.086188</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>48</th>\n",
" <td>0.081271</td>\n",
" <td>0.196938</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>49</th>\n",
" <td>0.210521</td>\n",
" <td>0.259438</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50</th>\n",
" <td>0.339271</td>\n",
" <td>0.198438</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>51</th>\n",
" <td>0.103271</td>\n",
" <td>0.188354</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>52</th>\n",
" <td>-0.132729</td>\n",
" <td>0.178269</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>53</th>\n",
" <td>-0.006791</td>\n",
" <td>0.154936</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>54</th>\n",
" <td>0.119146</td>\n",
" <td>0.131604</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>55</th>\n",
" <td>0.245084</td>\n",
" <td>0.108271</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>56</th>\n",
" <td>0.371021</td>\n",
" <td>0.084938</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>57</th>\n",
" <td>0.225021</td>\n",
" <td>-0.106312</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>58</th>\n",
" <td>0.142271</td>\n",
" <td>0.051938</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>59</th>\n",
" <td>-0.038479</td>\n",
" <td>0.202938</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>60</th>\n",
" <td>0.010771</td>\n",
" <td>0.093938</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>61</th>\n",
" <td>0.060021</td>\n",
" <td>-0.015062</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>62</th>\n",
" <td>0.109271</td>\n",
" <td>-0.124062</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>63</th>\n",
" <td>0.549271</td>\n",
" <td>-0.173562</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>64</th>\n",
" <td>0.017771</td>\n",
" <td>-0.152812</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>65</th>\n",
" <td>0.288271</td>\n",
" <td>0.026188</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>66</th>\n",
" <td>0.321271</td>\n",
" <td>-0.122062</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>67</th>\n",
" <td>0.242855</td>\n",
" <td>-0.019728</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>68</th>\n",
" <td>0.164438</td>\n",
" <td>0.082605</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>69</th>\n",
" <td>0.086021</td>\n",
" <td>0.184938</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>70</th>\n",
" <td>0.289521</td>\n",
" <td>-0.075812</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>71</th>\n",
" <td>0.162521</td>\n",
" <td>0.039438</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>72</th>\n",
" <td>0.399271</td>\n",
" <td>-0.192562</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>73</th>\n",
" <td>-0.012229</td>\n",
" <td>-0.130562</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>74</th>\n",
" <td>0.116271</td>\n",
" <td>-0.067062</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75</th>\n",
" <td>0.149021</td>\n",
" <td>-0.199812</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>76</th>\n",
" <td>0.061521</td>\n",
" <td>0.012438</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>77</th>\n",
" <td>-0.231229</td>\n",
" <td>-0.134062</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>78</th>\n",
" <td>0.143495</td>\n",
" <td>-0.170730</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>79</th>\n",
" <td>0.171521</td>\n",
" <td>-0.310562</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>80</th>\n",
" <td>0.277271</td>\n",
" <td>-0.266812</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>81</th>\n",
" <td>-0.035729</td>\n",
" <td>-0.146562</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>82</th>\n",
" <td>0.077521</td>\n",
" <td>-0.050562</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>83</th>\n",
" <td>-0.275979</td>\n",
" <td>-0.139062</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>84</th>\n",
" <td>0.299495</td>\n",
" <td>-0.467397</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>85</th>\n",
" <td>0.173034</td>\n",
" <td>-0.289234</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>86</th>\n",
" <td>-0.056966</td>\n",
" <td>-0.114734</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>87</th>\n",
" <td>0.235034</td>\n",
" <td>-0.349734</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 对位MarkX 对位MarkY Angle\n",
"Index \n",
"1 -0.152350 0.081269 0\n",
"2 -0.304979 -0.025812 0\n",
"3 -0.193479 0.192938 0\n",
"4 -0.223229 -0.100562 0\n",
"5 -0.201229 -0.215562 0\n",
"6 -0.408229 0.018938 0\n",
"7 -0.184229 0.241438 0\n",
"8 -0.495229 0.374688 0\n",
"9 -0.062729 -0.065312 0\n",
"10 0.007521 0.148188 0\n",
"11 -0.009729 -0.290812 0\n",
"12 -0.094479 -0.114812 0\n",
"13 0.010771 0.078938 0\n",
"14 -0.017479 -0.233562 0\n",
"15 -0.133604 -0.083937 0\n",
"16 -0.249729 0.065688 0\n",
"17 -0.323729 -0.177562 0\n",
"18 -0.173729 0.117938 0\n",
"19 -0.230229 -0.018312 0\n",
"20 -0.208979 -0.043812 0\n",
"21 -0.164729 -0.042562 0\n",
"22 -0.108979 0.027438 0\n",
"23 -0.039479 -0.216562 0\n",
"24 -0.294479 -0.471562 0\n",
"25 -0.074979 0.122438 0\n",
"26 -0.319479 -0.004562 0\n",
"27 -0.237479 0.135938 0\n",
"28 0.019021 0.390188 0\n",
"29 0.028771 0.334438 0\n",
"30 0.038521 0.278688 0\n",
"31 0.048271 0.222938 0\n",
"32 0.058021 0.167188 0\n",
"33 0.096771 -0.165562 0\n",
"34 0.119021 0.010688 0\n",
"35 0.166021 -0.203562 0\n",
"36 -0.510283 0.419602 0\n",
"37 -0.399479 0.175188 0\n",
"38 -0.036979 0.190688 0\n",
"39 -0.017479 0.310188 0\n",
"40 -0.003479 0.138688 0\n",
"41 0.072521 -0.108062 0\n",
"42 0.013021 0.123688 0\n",
"43 0.341021 0.055188 0\n",
"44 0.417271 0.034188 0\n",
"45 0.196771 0.288938 0\n",
"46 0.159021 -0.086562 0\n",
"47 -0.068979 0.086188 0\n",
"48 0.081271 0.196938 0\n",
"49 0.210521 0.259438 0\n",
"50 0.339271 0.198438 0\n",
"51 0.103271 0.188354 0\n",
"52 -0.132729 0.178269 0\n",
"53 -0.006791 0.154936 0\n",
"54 0.119146 0.131604 0\n",
"55 0.245084 0.108271 0\n",
"56 0.371021 0.084938 0\n",
"57 0.225021 -0.106312 0\n",
"58 0.142271 0.051938 0\n",
"59 -0.038479 0.202938 0\n",
"60 0.010771 0.093938 0\n",
"61 0.060021 -0.015062 0\n",
"62 0.109271 -0.124062 0\n",
"63 0.549271 -0.173562 0\n",
"64 0.017771 -0.152812 0\n",
"65 0.288271 0.026188 0\n",
"66 0.321271 -0.122062 0\n",
"67 0.242855 -0.019728 0\n",
"68 0.164438 0.082605 0\n",
"69 0.086021 0.184938 0\n",
"70 0.289521 -0.075812 0\n",
"71 0.162521 0.039438 0\n",
"72 0.399271 -0.192562 0\n",
"73 -0.012229 -0.130562 0\n",
"74 0.116271 -0.067062 0\n",
"75 0.149021 -0.199812 0\n",
"76 0.061521 0.012438 0\n",
"77 -0.231229 -0.134062 0\n",
"78 0.143495 -0.170730 0\n",
"79 0.171521 -0.310562 0\n",
"80 0.277271 -0.266812 0\n",
"81 -0.035729 -0.146562 0\n",
"82 0.077521 -0.050562 0\n",
"83 -0.275979 -0.139062 0\n",
"84 0.299495 -0.467397 0\n",
"85 0.173034 -0.289234 0\n",
"86 -0.056966 -0.114734 0\n",
"87 0.235034 -0.349734 0"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"BC_X = BC_X.mean(axis=1)\n",
"DieBC['对位MarkX'] = BC_X.fillna(BC_X.interpolate()).values\n",
"BC_Y = BC_Y.mean(axis=1)\n",
"DieBC['对位MarkY'] = BC_Y.fillna(BC_Y.interpolate()).values\n",
"\n",
"DieBC['Angle'] = 0\n",
"DieBC"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "2dddf61b-818e-4592-8b46-765bfa119856",
"metadata": {},
"outputs": [],
"source": [
"# DieBC.to_excel(f'Die1/Die1局部补偿10-12.xlsx')"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "fb698448-6d4d-4477-8afd-35430692c8df",
"metadata": {},
"outputs": [],
"source": [
"# DieBC['Top Mark1 X'] = AlX981\n",
"# DieBC['Top Mark1 Y'] = AlY981\n",
"# DieBC['Top Mark2 X'] = AnX981\n",
"# DieBC['Top Mark2 Y'] = AnY981\n",
"# DieBC.to_excel(f'Die1/Die1设备方向偏差9-8-2.xlsx')"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "94ecaf78-98bb-45a4-b66f-d36519a42cd5",
"metadata": {},
"outputs": [],
"source": [
"# num = -1\n",
"# AlX982 = AlignMarkX.iloc[:,num]-AlignMarkX.iloc[:,num].mean()\n",
"# AlX982 = AlX982.fillna(AlX982.interpolate()).values\n",
"\n",
"# AlY982 = AlignMarkY.iloc[:,num]-AlignMarkY.iloc[:,num].mean()\n",
"# AlY982 = AlY982.fillna(AlY982.interpolate()).values\n",
"\n",
"# AnX982 = AngleMarkX.iloc[:,num]-AngleMarkX.iloc[:,num].mean()\n",
"# AnX982 = AnX982.fillna(AnX982.interpolate()).values\n",
"\n",
"# AnY982 = AngleMarkY.iloc[:,num]-AngleMarkY.iloc[:,num].mean()\n",
"# AnY982 = AnY982.fillna(AnY982.interpolate()).values"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "21da49b6-3576-4468-8c86-070e51ac0bce",
"metadata": {},
"outputs": [],
"source": [
"# DieBC['Top Mark1 X'] = AlX982\n",
"# DieBC['Top Mark1 Y'] = AlY982\n",
"# DieBC['Top Mark2 X'] = AnX982\n",
"# DieBC['Top Mark2 Y'] = AnY982\n",
"# DieBC.to_excel(f'Die1/Die1设备方向偏差9-9-1.xlsx')"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "1858da30",
"metadata": {},
"outputs": [],
"source": [
"# num = -1\n",
"# Die3BC['Top Mark1 X'] = AlignMarkX.iloc[:,num].fillna(AlignMarkX.iloc[:,num].interpolate()).values\n",
"# Die3BC['Top Mark1 Y'] = AlignMarkY.iloc[:,num].fillna(AlignMarkY.iloc[:,num].interpolate()).values\n",
"# Die3BC['Top Mark2 X'] = AngleMarkX.iloc[:,num].fillna(AngleMarkX.iloc[:,num].interpolate()).values\n",
"# Die3BC['Top Mark2 Y'] = AngleMarkY.iloc[:,num].fillna(AngleMarkY.iloc[:,num].interpolate()).values"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "30ccc3df-e5ad-430c-8ac8-0dd074d7f682",
"metadata": {},
"outputs": [],
"source": [
"# Die3BC.to_excel(f'Die1/Die1补偿值9-8.xlsx')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6d74cea0",
"metadata": {},
"outputs": [],
"source": [
"# num = -2\n",
"# AlX915 = AlignMarkX.iloc[:,num]-AlignMarkX.iloc[:,num].mean()\n",
"# AlX915 = AlX915.fillna(AlX981.interpolate()).values\n",
"\n",
"# AlY915 = AlignMarkY.iloc[:,num]-AlignMarkY.iloc[:,num].mean()\n",
"# AlY915 = AlY915.fillna(AlY981.interpolate()).values\n",
"\n",
"# Ang915 = Angle.iloc[:,num] - Angle.iloc[:,num],mean()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
"21d8b0ba77b54fbfabcdf5f52b80df1a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {}
},
"2a0670114f11457b80a6ef3ef22a34fc": {
"model_module": "jupyter-matplotlib",
"model_module_version": "^0.11",
"model_name": "ToolbarModel",
"state": {
"_model_module_version": "^0.11",
"_view_module_version": "^0.11",
"collapsed": true,
"layout": "IPY_MODEL_f7658ea254754f89ae1eaaca3822afd1",
"orientation": "vertical",
"toolitems": [
[
"Home",
"Reset original view",
"home",
"home"
],
[
"Back",
"Back to previous view",
"arrow-left",
"back"
],
[
"Forward",
"Forward to next view",
"arrow-right",
"forward"
],
[
"Pan",
"Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect",
"arrows",
"pan"
],
[
"Zoom",
"Zoom to rectangle\nx/y fixes axis",
"square-o",
"zoom"
],
[
"Download",
"Download plot",
"floppy-o",
"save_figure"
]
]
}
},
"2d1533973ff749659dd783abe0db740f": {
"model_module": "jupyter-matplotlib",
"model_module_version": "^0.11",
"model_name": "ToolbarModel",
"state": {
"_model_module_version": "^0.11",
"_view_module_version": "^0.11",
"collapsed": true,
"layout": "IPY_MODEL_b8d4c7781ff5497da21ab97b922bac2f",
"orientation": "vertical",
"toolitems": [
[
"Home",
"Reset original view",
"home",
"home"
],
[
"Back",
"Back to previous view",
"arrow-left",
"back"
],
[
"Forward",
"Forward to next view",
"arrow-right",
"forward"
],
[
"Pan",
"Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect",
"arrows",
"pan"
],
[
"Zoom",
"Zoom to rectangle\nx/y fixes axis",
"square-o",
"zoom"
],
[
"Download",
"Download plot",
"floppy-o",
"save_figure"
]
]
}
},
"30e39652821f45d4b6a059be76bf8b9b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {}
},
"403a3e58c30643c69e94e76f12bc0587": {
"model_module": "jupyter-matplotlib",
"model_module_version": "^0.11",
"model_name": "MPLCanvasModel",
"state": {
"_data_url": "
"_figure_label": "Figure 2",
"_model_module_version": "^0.11",
"_size": [
800,
550
],
"_view_module_version": "^0.11",
"layout": "IPY_MODEL_6bd4aa27ce3d4da78e5e37533a8df70a",
"toolbar": "IPY_MODEL_8a5b8401a4764aa19048fef48718488b",
"toolbar_position": "left"
}
},
"6bd4aa27ce3d4da78e5e37533a8df70a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {}
},
"8a5b8401a4764aa19048fef48718488b": {
"model_module": "jupyter-matplotlib",
"model_module_version": "^0.11",
"model_name": "ToolbarModel",
"state": {
"_model_module_version": "^0.11",
"_view_module_version": "^0.11",
"collapsed": true,
"layout": "IPY_MODEL_30e39652821f45d4b6a059be76bf8b9b",
"orientation": "vertical",
"toolitems": [
[
"Home",
"Reset original view",
"home",
"home"
],
[
"Back",
"Back to previous view",
"arrow-left",
"back"
],
[
"Forward",
"Forward to next view",
"arrow-right",
"forward"
],
[
"Pan",
"Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect",
"arrows",
"pan"
],
[
"Zoom",
"Zoom to rectangle\nx/y fixes axis",
"square-o",
"zoom"
],
[
"Download",
"Download plot",
"floppy-o",
"save_figure"
]
]
}
},
"8de2ee2a201f4e78b83bb73202597800": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {}
},
"b8d4c7781ff5497da21ab97b922bac2f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {}
},
"cc2cbd4941e54dc4ab6e09927cb3f90b": {
"model_module": "jupyter-matplotlib",
"model_module_version": "^0.11",
"model_name": "MPLCanvasModel",
"state": {
"_data_url": "
"_figure_label": "Figure 3",
"_model_module_version": "^0.11",
"_size": [
800,
550
],
"_view_module_version": "^0.11",
"layout": "IPY_MODEL_8de2ee2a201f4e78b83bb73202597800",
"toolbar": "IPY_MODEL_2d1533973ff749659dd783abe0db740f",
"toolbar_position": "left"
}
},
"ee97a7eebb9a425eb0ade6e31817aa89": {
"model_module": "jupyter-matplotlib",
"model_module_version": "^0.11",
"model_name": "MPLCanvasModel",
"state": {
"_data_url": "
"_figure_label": "Figure 1",
"_model_module_version": "^0.11",
"_size": [
800,
550
],
"_view_module_version": "^0.11",
"layout": "IPY_MODEL_21d8b0ba77b54fbfabcdf5f52b80df1a",
"toolbar": "IPY_MODEL_2a0670114f11457b80a6ef3ef22a34fc",
"toolbar_position": "left"
}
},
"f7658ea254754f89ae1eaaca3822afd1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {}
}
},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}