Files
ZKFC_ACC/000补偿值计算/.ipynb_checkpoints/Die1数据计算-checkpoint.ipynb

4995 lines
1.7 MiB
Plaintext
Raw Normal View History

2025-11-23 20:43:12 +08:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "ad8424f1-4fd8-4f68-9557-f560d5a28e4b",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import sys\n",
"import os\n",
"sys.path.append('..')\n",
"from QX8800SP_DA import *\n",
"plt.rcParams['font.family'] = ['SimHei'] # 用来正常显示中文标签\n",
"plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号\n",
"pd.set_option('display.max_columns', None) #显示所有列,把行显示设置成最大\n",
"pd.set_option('display.max_rows', None) #显示所有行,把列显示设置成最大\n",
"#交互式绘图\n",
"%matplotlib widget"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "ccb60f92-e657-4732-a679-6ca67bfcf201",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"MCX (96, 104)\n",
"MCY (96, 104)\n",
"Angle14 (96, 6)\n",
"M1X (96, 104)\n",
"M1Y (96, 104)\n",
"M4X (96, 6)\n",
"M4Y (96, 6)\n",
"Angle13 (96, 99)\n",
"M3X (96, 99)\n",
"M3Y (96, 99)\n",
"Note (16, 1)\n"
]
}
],
"source": [
"#写入TotalData\n",
"DieType = \"Die1\"\n",
"TotalData = pd.read_excel('../Die1AllData.xlsx',sheet_name=None,header=0,index_col = 0)\n",
"die_nums = -2\n",
"for i in TotalData:\n",
" print(i,TotalData[i].shape)"
]
},
{
"cell_type": "markdown",
"id": "8f9078d7",
"metadata": {},
"source": [
"## 对位Mark"
]
},
{
"cell_type": "markdown",
"id": "31b36a67",
"metadata": {},
"source": [
"### 对位MarkX"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6de0e187",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>01.07.2-Die1</th>\n",
" <th>01.08.1-Die1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>74.000000</td>\n",
" <td>74.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>0.093351</td>\n",
" <td>0.086345</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>0.153334</td>\n",
" <td>0.173729</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>-0.369500</td>\n",
" <td>-0.269500</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>-0.003375</td>\n",
" <td>-0.021125</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>0.104750</td>\n",
" <td>0.070500</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>0.195250</td>\n",
" <td>0.220875</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>0.465000</td>\n",
" <td>0.677500</td>\n",
" </tr>\n",
" <tr>\n",
" <th>range</th>\n",
" <td>0.834500</td>\n",
" <td>0.947000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3sigma</th>\n",
" <td>0.460001</td>\n",
" <td>0.521186</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 01.07.2-Die1 01.08.1-Die1\n",
"count 74.000000 74.000000\n",
"mean 0.093351 0.086345\n",
"std 0.153334 0.173729\n",
"min -0.369500 -0.269500\n",
"25% -0.003375 -0.021125\n",
"50% 0.104750 0.070500\n",
"75% 0.195250 0.220875\n",
"max 0.465000 0.677500\n",
"range 0.834500 0.947000\n",
"3sigma 0.460001 0.521186"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# AlignMarkX = TotalData['M3X'].dropna(subset='QX8800SP_Index').set_index('QX8800SP_Index').iloc[:,die_nums:]\n",
"AlignMarkX = TotalData['MCX'].dropna(subset='QX8800SP_Index').set_index('QX8800SP_Index').iloc[:,die_nums:].sort_index(axis=1)\n",
"AXdescibe = describe_3s(AlignMarkX)\n",
"AXdescibe"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "5355743f",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "003fe83a640e4f21b4518f17acde7200",
"version_major": 2,
"version_minor": 0
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAImCAYAAACrXu7BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACkOElEQVR4nOzdd3gURR8H8O/tXsmlJxBCTSgJoffQmyEC0hUQpCtVEFCagigCCiKiUlUUpb6CdEEQRAQbvfcUaoAESL9Lcpcr7x8HezmSQHIhdwG+n+fJk8zs7Mzc3mVvfzuzuzKz2WwGERERERGRAwjO7gARERERET0/GIAQEREREZHDMAAhIiIiIiKHYQBCREREREQOwwCEiIiIiIgchgEIERERERE5DAMQIiIiIiJyGAYgRERERETkMAxAiIiIiIjIYRiAEBERERGRwzAAISIijBgxAmvWrMl1uUajyVc+ERFRbhiAEBERrl27hnv37uW4LCEhAa1bt8bq1att8qdMmYIRI0Y4ontERPQMYQBCRJQPhw4dQkhICEJCQlC3bl306NED69evf2TZgli/fj369+9v17pLly7FihUrsHr1auln3bp1OZZVq9UQhJy/Evbt24fU1FRUqVLFJr9bt244cuQIduzYkeN6CxcuREhICD7++GMpb8aMGQgJCcHChQvtek05CQkJwaFDh55YfQ/bt28fQkJCcOTIESlv9erVqFatGm7cuFFo7RIRPavkzu4AEdHT6PPPP4e3tze2bNmCqVOnIjY2FqNHj7YpU716dWzYsMHuNo4ePYqZM2eidu3adq1/6dIlKJVKKbCIjo6GVqtF165dIZfLIZdn/wrIzMyEyWSCSqWS8tavX48KFSqgQYMGiIqKgslkgiiKKFasGDp37gyZTIbo6GgAgNlshkqlQrly5aT1L168aNOnp03r1q1RrVo1rFy5EqGhoTCbzVi1ahU6depk8zqJiChvGIAQEdkhKCgIVatWRYsWLaDT6fDtt9+iT58+KFasmFTG3d0dNWvWtKv+P//8E+PGjUOlSpXs7uO8efNs0p9++inu3buHoUOH4vDhw9nKnzt3DosWLUKHDh3w5ZdfSnnHjx/HkCFDAACTJk3C5cuXbYKXffv2SX+bTCY0b94cCxYskPKyBh1PYwACAMOHD8e4ceNw8+ZNREZG4tq1a1iyZImzu0VE9FRiAEJEVEC9evXC77//jr///hvdunV7InUePnwYX331FU6fPp1jsJAX69evR4kSJdCqVSsAlmCibdu2aNu2LeRyOVxcXKSy/fr1Q4sWLTB48GDIZDIpf/HixQAANzc3AMCmTZvy1YdatWrh7NmzuHXrFsxmM7Rard1BmTO1bdsWgYGBWLNmDS5evIi2bdsWKDgkInqe8RoQIqICenBtxINpSA886hqQCxcuYMCAAahVqxbatGmD5cuX2yyfOHGiFDjYKykpCWPHjsWpU6eg0Whw4sQJhIaGws/PDxEREXBzc5N+ZDIZFAoFvLy84OnpCQA4cOAA/vjjDykNAAaDAYsXL8bx48dt2poxYwZeeeUVpKSk2OS7uLggICAAly5dwsWLF1GuXDmo1WqbMsuXL0ebNm1Qu3ZtdO3aFf/995/N8vfeew/vvfce4uLiMH78eDRq1AjXr1/P8TXfu3cP4eHhePvtt2Eymezedg8TBAHDhw/HTz/9hP/++w/Dhw9/YnUTET1vGIAQERWQl5cXACA5OTlP5RMTEzFo0CB4e3vj+++/x+uvv47PPvvM5mL23C4Iz4+hQ4di8ODBGD58OFasWAEfHx9UqVIFZ8+exRtvvPHI6VAajQZTpkxBhw4dbC4+l8vl2LVrF37++Web8qdPn4ZKpbIJVh4ICQnBxYsXcenSJVSuXNlm2bZt2zB79mz06dMHy5YtQ/369TFmzJhst/dNSkrCa6+9BplMhtGjR8PHxyfHPg8dOhQVKlTA3Llzs23D+Ph4XLt2DYmJiblvtEfo1KkTXFxcUL9+fVSvXt2uOoiIiAEIEVGBZZ2ylBerV6+GIAiYN28eGjZsiH79+qFNmzbYunXrE+/b6NGj0bp1ayxYsACdOnUCYJkW1apVK+k6j5y4u7ujXbt2eP/997Mt69q1K37//XfodDoAgF6vx6VLlxAeHp5jXZUrV5ZGQB4eEfL398fcuXMxePBgNGjQAD179kRqaiouX75sU+7PP/9E//798fnnn6Nfv37w8PCwWa7X6zFy5EgYjUYsXLgQCoUiWz/mzp2Ltm3bYtmyZbm+7keJiIhAQkICLly4gKSkJLvqICIiBiBERAX2YNrRg5GQx3lwIFujRg3plr67d+/G1atXC6V/HTp0AABcuXJFyhs8eDD+/PNPnDt3Ltf13nvvPRQvXjxbfufOnZGWloZ//vkHgOUuV3q9Hi1btsyxnsqVK+c6AtKwYUN4e3tj2rRp6NKlC3r06AEASE9PtykXFBSEgQMH5trXjz/+GJcvX0ZMTEyhPRxxyZIlaNy4Mdzd3bFy5cpCaYOI6HnAAISIqIAiIiIAWA6S86pWrVrYsmWLzc8PP/zwxPum1+vx6aef4pVXXsGRI0ekaV6hoaEYMWIEfH19811niRIlULVqVezfvx8AcOzYMZQoUQLBwcE5lq9cuTKuXLmCq1evZgtA5s6di7Fjx0KtVmPEiBHYu3dvjnXUrFnzkdPSZDIZtmzZgkqVKmH+/Pk5lvn0009x6dIlTJgwIS8v00ZkZCT27NmDYcOGoX///li9ejWfAk9EZCcGIEREBfTzzz9DpVLl+aLx4OBg3L59G5UqVULVqlVRtWpVXLlyBWvXrn3ifZs1axZMJhOmTZuGCRMmYNasWYiJiQEAvPPOOyhVqpRd9TZr1gx///03AMvF9s2aNcu1bEBAANRqNVxcXBAYGGiz7Oeff8agQYPw3nvvoUOHDnYf1H/wwQcoXrw4JkyYgA0bNtg8e+SBO3fuIDo6GgkJCfmu/5tvvkFwcDCaNWuG3r17w2AwYM2aNXb1lYjoeccAhIjIDlFRUfj3338xadIk7NixAxMnToS3t3ee1u3Xrx/0ej3eeecdHDhwANu3b8f06dOfyIXnD5jNZnz88cfYvn07Fi5cCBcXF/Tq1QuVKlXC//73P7vqzMzMhMFgAAC89tprWLlyJfR6PQ4dOoTGjRvblMt6BypBEFCpUiUEBQVle40+Pj44cOAAjhw5IgUjAGA0GvPVtwfPJWnUqBGaNWuG2bNnZyvzxRdfoEOHDvkeabp27Rp27tyJN954AwDg4eGBnj17Yvny5dmmihER0eMxACEissOECRMwatQo3LhxA4sXL0b//v3zvK6vry+WL1+O1NRUDB8+HHPmzEGPHj0wadKkJ9a/+fPnY+PGjdKZe8ASCCxYsADjxo2Tyl2/fh1Hjx7FrVu3pGd9PMxoNMJsNmPDhg2oXr06QkJC8MILLyA8PBw1a9ZEWloa3n33Xel6lho1auDGjRs2dVSuXDnb9CvAMi1Kp9Nh6NChWLNmDcaPHw8fHx8cO3bM7tc+YcIEHD58GHv27LG7jqy++eYb+Pr6omPHjlLewIEDkZKSgnXr1j2RNoiInicys9lsdnYniIjoyUpPT8fly5cfe7vYyZMnY9OmTahcuTIWL16MgICAbGVeffVVtGzZEr1798a9e/dyvMNUVjqdDpUqVYJKpSrQayAiomcTAxAioudYQkICzGYzihUrlmuZl156CeHh4Rg/frwDe0ZERM8qBiBEREREROQwvAaEiIiIiIgchgEIERERERE5DAMQIiIiIiJyGAYgRERERETkMAxAiIiIiIjIYRiAEBERERGRwzAAISIiIiIih2EAQkREREREDsMAhIiIiIiIHIYBCBEREREROQwDECIiIiIichgGIERERERE5DAMQIiIiIiIyGEYgBARERERkcMwACEiIiIiIodhAEJERERERA7DAISIiIiIiByGAQgRERERETkMAxAiIioSdDodtm/f7uxuEBFRIWMAQkRET9ScOXNQv359aDQaKW/MmDFo27YtjEZjruutXLkSKSkpAICwsDCEhISgevXqCAs
"text/html": [
"\n",
" <div style=\"display: inline-block;\">\n",
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
" Figure\n",
" </div>\n",
" <img src='
" </div>\n",
" "
],
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(2,1)\n",
"ax[0].plot([i+1 for i in range(len(AlignMarkX.columns))],AXdescibe.loc['mean'],linestyle = '-.',marker = 'o',color='w')\n",
"AlignMarkX.boxplot(ax=ax[0])\n",
"ax[0].axhline(0,c='orange',ls='-.',label=r'Mean_X:$0um\\pm0.10um$')\n",
"for i in range(len(AlignMarkX.columns)):\n",
" ax[0].annotate(round(AXdescibe.loc['mean'][i],3), \n",
" xy=(i+1,AXdescibe.loc['mean'][i]),\n",
" xytext=(i+0.95,AXdescibe.loc['mean'][i]),\n",
" fontsize=15,\n",
" color=\"r\")\n",
"ax[0].legend()\n",
"ax[0].set_title('mean_X/Day')\n",
"labels = ax[0].get_xticklabels()\n",
"plt.setp(labels, rotation=90)\n",
"ax[1].plot([i for i in AlignMarkX.columns],AXdescibe.loc['3sigma'],marker = 'o')\n",
"ax[1].axhline(0.8,c='orange',ls='-.',label=r'3sigma_X:$<0.800um$')\n",
"ax[1].axhline(0.57,c='green',ls='-.',label=r'3sigma_X:$<0.570um$')\n",
"for i in range(len(AlignMarkX.columns)):\n",
" ax[1].annotate(round(AXdescibe.loc['3sigma'][i],3), \n",
" xy=(i,AXdescibe.loc['3sigma'][i]),\n",
" xytext=(i,AXdescibe.loc['3sigma'][i]),\n",
" fontsize=15,\n",
" color=\"r\")\n",
"ax[1].legend() \n",
"ax[1].set_title('3sigam_X/Day')\n",
"labels = ax[1].get_xticklabels()\n",
"plt.setp(labels, rotation=90)\n",
"# ax[2].plot([i for i in AlignMarkX.columns],AXdescibe.loc['range'],marker = 'o')\n",
"# for i in range(len(AlignMarkX.columns)):\n",
"# ax[2].annotate(round(AXdescibe.loc['range'][i],3), \n",
"# xy=(i,AXdescibe.loc['range'][i]),\n",
"# xytext=(i,AXdescibe.loc['range'][i]),\n",
"# color=\"r\")\n",
"# ax[2].set_title('Range_X/Day')\n",
"plt.suptitle('Die1 对位MarkX')\n",
"fig.tight_layout()\n",
"plt.savefig('Die1/Die1对位MarkX.jpg',dpi=200)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "64f88c9a",
"metadata": {},
"source": [
"### 对位MarkY"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "9e294f7b-3ea3-4a33-99b5-92e22bd1a827",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>01.07.2-Die1</th>\n",
" <th>01.08.1-Die1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>74.000000</td>\n",
" <td>74.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>0.011074</td>\n",
" <td>-0.092101</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>0.247323</td>\n",
" <td>0.177734</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>-0.627000</td>\n",
" <td>-0.544000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>-0.136625</td>\n",
" <td>-0.197625</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>0.039250</td>\n",
" <td>-0.100000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>0.167375</td>\n",
" <td>0.025750</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>0.461500</td>\n",
" <td>0.470000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>range</th>\n",
" <td>1.088500</td>\n",
" <td>1.014000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3sigma</th>\n",
" <td>0.741969</td>\n",
" <td>0.533201</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 01.07.2-Die1 01.08.1-Die1\n",
"count 74.000000 74.000000\n",
"mean 0.011074 -0.092101\n",
"std 0.247323 0.177734\n",
"min -0.627000 -0.544000\n",
"25% -0.136625 -0.197625\n",
"50% 0.039250 -0.100000\n",
"75% 0.167375 0.025750\n",
"max 0.461500 0.470000\n",
"range 1.088500 1.014000\n",
"3sigma 0.741969 0.533201"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# AlignMarkY = TotalData['M3Y'].dropna(subset='QX8800SP_Index').set_index('QX8800SP_Index').iloc[:,die_nums:]\n",
"AlignMarkY = TotalData['MCY'].dropna(subset='QX8800SP_Index').set_index('QX8800SP_Index').iloc[:,die_nums:].sort_index(axis=1)\n",
"AYdescibe = describe_3s(AlignMarkY)\n",
"AYdescibe"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "81162e4f-1ed2-4365-9e55-2a0177174f18",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f77241dda0184cb983a842ad77fa867d",
"version_major": 2,
"version_minor": 0
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAImCAYAAACrXu7BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyJklEQVR4nOzdd3xT1d8H8M/NTtNdSpllFcreewvIEmQrshVBBAUFBOFBEVBAAdmoKMpUlgxBUNz8UGTKVKBl79GRNmlGM54/0t40TWfapqV83q8X2nvuueec3KY395szrmC32+0gIiIiIiLyAklhN4CIiIiIiJ4cDECIiIiIiMhrGIAQEREREZHXMAAhIiIiIiKvYQBCRERERERewwCEiIiIiIi8hgEIERERERF5DQMQIiIiIiLyGgYgRERERETkNQxAiIiIiIjIaxiAEBERxowZg02bNmW6X6fT5SqdiIgoMwxAiIgI169fx6NHjzLcFxsbi/bt22Pjxo0u6dOnT8eYMWO80TwiIipGGIAQEeXCkSNHEBkZicjISDRo0AD9+/fHtm3bssybF9u2bcPQoUM9Onb16tVYt24dNm7cKP7bsmVLhnnVajUkkow/En7//XckJiaievXqLum9e/fGsWPHsG/fvgyPW758OSIjI/H++++LabNnz0ZkZCSWL1/u0WvKSGRkJI4cOZJv5aU3a9YstGvXDhaLRUwzGAxo2rRpvr4OIqInhaywG0BE9DhauHAhAgMDsWvXLsyYMQP37t3D66+/7pKnVq1a2L59u8d1HD9+HHPmzEG9evU8Ov7ixYtQKBRiYHH58mXo9Xr06tULMpkMMpn7R0BycjJsNhuUSqWYtm3bNlSqVAmNGzdGdHQ0bDYbpFIpQkJC0LNnTwiCgMuXLwMA7HY7lEolypcvLx5/4cIFlzY9bl566SVs2bIFP/74I5555hkAwM6dO2E2mzF48OBCbh0R0eOHAQgRkQciIiJQo0YNtGnTBiaTCZ999hkGDRqEkJAQMY+vry/q1KnjUfm//fYbJk6ciCpVqnjcxkWLFrlsz58/H48ePcKoUaNw9OhRt/znz5/HihUr0L17dyxevFhMO3nyJF5++WUAwJQpU3DlyhWX4OX3338Xf7bZbGjdujWWLVsmpqUNOh7HAKR8+fLo2rUr1q1bh2eeeQZ2ux0bNmxA3759ERwcXNjNIyJ67DAAISLKo+effx4//fQT/ve//6F37975UubRo0exZMkSnDlzJsNgISe2bduGkiVLol27dgAcwUTnzp3RuXNnyGQyqFQqMe+QIUPQpk0bjBw5EoIgiOkrV64EAGg0GgDAjh07ctWGunXr4ty5c7hz5w7sdjv0er3HQVlhGjVqFHr37o1//vkHCQkJuH79OlavXl3YzSIieixxDggRUR6lzo1IHYaUKqs5IP/99x+GDRuGunXromPHjli7dq3L/rfeeksMHDwVHx+PCRMm4PTp09DpdPjnn3/QpEkThIaG4tKlS9BoNOI/QRAgl8sREBAAf39/AMDhw4fxyy+/iNsAYLFYsHLlSpw8edKlrtmzZ6Nv375ISEhwSVepVAgPD8fFixdx4cIFlC9fHmq12iXP2rVr0bFjR9SrVw+9evXCX3/95bL/7bffxttvv4379+9j0qRJaNasGW7cuJHha3706BE6deqEN954AzabzeNzl16NGjXQunVrrFu3DuvWrUPXrl1dhpkREVHOsQeEiCiPAgICAABarTZH+ePi4jBixAg0a9YMX3zxBS5duoS5c+dCo9FgwIABAJDphPDcGDVqFIxGI1555RUMHToUQUFBqF69Os6cOYOXXnoJu3btyjRA0ul0mD59Orp37+6yOpZMJsOPP/6ImzdvomHDhmL6mTNnoFQqXYKVVJGRkbhw4QLsdjuqVavmcp727NmDefPmYcqUKahXrx727duH8ePH4/fff4evr6+YLz4+Hi+88AIaNmyI119/HUFBQRm2edSoUahUqRIWLFjgdg5jYmKg0+ng7++f4fHZefnll/HSSy/BbrfnuieIiIic2ANCRJRHaYcs5cTGjRshkUiwaNEiNG3aFEOGDEHHjh2xe/fufG/b66+/jvbt22PZsmXo0aMHAMewqHbt2onzPDLi6+uLLl264P/+7//c9vXq1Qs//fQTTCYTAMBsNuPixYvo1KlThmVVq1ZN7AFJH/CEhYVhwYIFGDlyJBo3bowBAwYgMTERV65cccn322+/YejQoVi4cCGGDBkCPz8/l/1msxljx46F1WrF8uXLIZfL3dqxYMECdO7cGWvWrMn0dWelRYsWqFKlCho0aICaNWt6VAYRETEAISLKs9RhR6k9Idm5dOkSYmNjUbt2bXFJ3wMHDuDatWsF0r7u3bsDAK5evSqmjRw5Er/99hvOnz+f6XFvv/02SpQo4Zbes2dPJCUl4dChQwAcq1yZzWa0bds2w3KqVauGCxcu4OLFi6hWrZrLvqZNmyIwMBAzZ87Es88+i/79+wNwLHObVkREBIYPH55pW99//31cuXIFt27dKtCHIwYFBXnUe0JERE4MQIiI8ujSpUsAHDfJOVW3bl3s2rXL5d+XX36Z720zm82YP38++vbti2PHjonPLGnSpAnGjBnj0SpOJUuWRI0aNfDHH38AAE6cOIGSJUuiatWqGeavVq0arl69imvXrrkFIAsWLMCECROgVqsxZswY/PrrrxmWUadOnSyHpQmCgF27dqFKlSpYunRphnnmz5+PixcvYvLkyTl5mUREVEAYgBAR5dHWrVuhVCpzPGm8atWquHv3LqpUqYIaNWqgRo0auHr1KjZv3pzvbZs7dy5sNhtmzpyJyZMnY+7cubh16xYA4M0330Tp0qU9KrdVq1b43//+B8Ax2b5Vq1aZ5g0PD4darYZKpUKFChVc9m3duhUjRozA22+/je7du3vce/HOO++gRIkSmDx5MrZv3+7y7JFUDx48wOXLlxEbG+tRHURElD8YgBAReSA6Ohp//vknpkyZgn379uGtt95CYGBgjo4dMmQIzGYz3nzzTRw+fBh79+7FrFmz8mXieSq73Y73338fe/fuxfLly6FSqfD888+jSpUq+Prrrz0qMzk5WXwa+AsvvID169fDbDbjyJEjaN68uUu+tCtQSSQSVKlSBREREW6vMSgoCIcPH8axY8fEYAQArFZrrtqW+lySZs2aoVWrVpg3b55bno8//hjdu3cvkJ4mIiLKOa6CRUTkgcmTJ0OtVqNGjRpYuXJlphOwMxIcHIy1a9di/vz5eOWVVxAQEID+/ftjwoQJ+da+pUuX4ttvv8Xnn38uDo2SSCRYtmwZSpYsKea7ceMGHjx4gDt37ojP+kjParXCbrdj+/bteO+99zLMM3XqVEydOlXcPnDggMv+9EOvUs2fPx9z5szBqFGjUKFCBUyaNAnz58/HiRMn0LJly9y8ZNHkyZPRp08f/Pzzz7n6vRARkXcIdrvdXtiNICKi/GUwGHDlyhXUqlUry3zTpk3Djh07UK1aNaxcuRLh4eFueZ577jm0bdsWAwcOxKNHjzJcYSotk8mEKlWqQKlU5uk1EBFR8cQAhIjoCRYbGwu73Y6QkJBM83Tr1g2dOnXCpEmTvNgyIiIqrhiAEBERERGR13ASOhEREREReQ0DECIiIiIi8hoGIERERERE5DUMQIiIiIiIyGsYgBARERERkdcwACEiIiIiIq9hAEJERERERF7DAISIiIiIiLyGAQgREREREXkNAxAiIiIiIvIaBiBEREREROQ1DECIiIiIiMhrGIAQEREREZHXMAAhIiIiIiKvYQBCRERERERewwCEiIiIiIi8hgEIERERERF5DQMQIiIiIiLyGgYgRERUJJlMJuzdu7ewm0FERPmMAQgRERUYu92Onj17YuLEiS7pp06dQmRkJI4cOZLpsevXr0dCQgIAoEOHDoiMjEStWrXQoUMHzJkzB7GxsQXadiIiKhgMQIiIqMAIgoCRI0fixx9/xL1798T0tWvXok6dOmjWrFmGx8XHx+PAgQN47rnnxLQePXpgw4YNGDx4MHbu3IkhQ4bAaDQW+Gs
"text/html": [
"\n",
" <div style=\"display: inline-block;\">\n",
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
" Figure\n",
" </div>\n",
" <img src='
" </div>\n",
" "
],
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(2,1)\n",
"ax[0].plot([i+1 for i in range(len(AlignMarkY.columns))],AYdescibe.loc['mean'],linestyle = '-.',marker = 'o',color='w')\n",
"AlignMarkY.boxplot(ax=ax[0])\n",
"ax[0].axhline(0,c='orange',ls='-.',label=r'Mean_Y:$0um\\pm0.10um$')\n",
"for i in range(len(AlignMarkY.columns)):\n",
" ax[0].annotate(round(AYdescibe.loc['mean'][i],2), \n",
" xy=(i+1,AYdescibe.loc['mean'][i]),\n",
" xytext=(i+0.95,AYdescibe.loc['mean'][i]),\n",
" fontsize=15,\n",
" color=\"r\")\n",
"ax[0].legend()\n",
"ax[0].set_title('mean_Y/Day')\n",
"labels = ax[0].get_xticklabels()\n",
"plt.setp(labels, rotation=90)\n",
"ax[1].plot([i for i in AlignMarkY.columns],AYdescibe.loc['3sigma'],marker = 'o')\n",
"ax[1].axhline(0.8,c='orange',ls='-.',label=r'3sigma_Y:$<0.800um$')\n",
"ax[1].axhline(0.57,c='green',ls='-.',label=r'3sigma_Y:$<0.570um$')\n",
"for i in range(len(AlignMarkY.columns)):\n",
" ax[1].annotate(round(AYdescibe.loc['3sigma'][i],3), \n",
" xy=(i,AYdescibe.loc['3sigma'][i]),\n",
" xytext=(i,AYdescibe.loc['3sigma'][i]),\n",
" fontsize=15,\n",
" color=\"r\")\n",
"ax[1].legend() \n",
"ax[1].set_title('3sigam_Y/Day')\n",
"labels = ax[1].get_xticklabels()\n",
"plt.setp(labels, rotation=90)\n",
"# ax[2].plot([i for i in AlignMarkY.columns],AYdescibe.loc['range'],marker = 'o')\n",
"# for i in range(len(AlignMarkY.columns)):\n",
"# ax[2].annotate(round(AYdescibe.loc['range'][i],3), \n",
"# xy=(i,AYdescibe.loc['range'][i]),\n",
"# xytext=(i,AYdescibe.loc['range'][i]),\n",
"# color=\"r\")\n",
"# ax[2].set_title('Range_Y/Day')\n",
"plt.suptitle('Die1 对位MarkY')\n",
"fig.tight_layout()\n",
"plt.savefig('Die1/Die1对位MarkY.jpg',dpi=200)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "6ace8d23",
"metadata": {},
"source": [
"## 角度Mark"
]
},
{
"cell_type": "markdown",
"id": "c70c8ca9",
"metadata": {},
"source": [
"### 角度MarkX"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "87ad2953",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>01.07.2-Die1</th>\n",
" <th>01.08.1-Die1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>74.000000</td>\n",
" <td>74.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>-0.187108</td>\n",
" <td>-0.200973</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>0.204574</td>\n",
" <td>0.185278</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>-0.576000</td>\n",
" <td>-0.729000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>-0.291500</td>\n",
" <td>-0.305000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>-0.208500</td>\n",
" <td>-0.181000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>-0.087750</td>\n",
" <td>-0.108750</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>0.345000</td>\n",
" <td>0.355000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>range</th>\n",
" <td>0.921000</td>\n",
" <td>1.084000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3sigma</th>\n",
" <td>0.613723</td>\n",
" <td>0.555833</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 01.07.2-Die1 01.08.1-Die1\n",
"count 74.000000 74.000000\n",
"mean -0.187108 -0.200973\n",
"std 0.204574 0.185278\n",
"min -0.576000 -0.729000\n",
"25% -0.291500 -0.305000\n",
"50% -0.208500 -0.181000\n",
"75% -0.087750 -0.108750\n",
"max 0.345000 0.355000\n",
"range 0.921000 1.084000\n",
"3sigma 0.613723 0.555833"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"AngleMarkX = TotalData['M1X'].dropna(subset='QX8800SP_Index').set_index('QX8800SP_Index').iloc[:,die_nums:].sort_index(axis=1)\n",
"RXdescibe = describe_3s(AngleMarkX)\n",
"RXdescibe"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "2dcd5e1f-bcd3-4100-8aa0-f2125301c1e3",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "86a6899280c0489ebbbe8f935658572b",
"version_major": 2,
"version_minor": 0
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAImCAYAAACrXu7BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9KElEQVR4nO3dd3wT9ePH8XeS7t0ylaWsguwl8BUECgICCioogiA4UEDcgqCoiIp7/EQUEEUEJ8qSqoCoONhDEClT9qY73Ul+fwTSpovOC8Lr+aAPmrvL5/PJJb3c++5znzM5HA6HAAAAAMAAZk83AAAAAMClgwACAAAAwDAEEAAAAACGIYAAAAAAMAwBBAAAAIBhCCAAAAAADEMAAQAAAGAYAggAAAAAwxBAAAAAABiGAAIAAADAMAQQALhEfPDBB5o6dWqZlPX888/r888/L5OyAACXFgIIAFwC9uzZo2nTpunKK68sk/LS0tL08ccfu03LzMxUcnJymZQPALh4EUAAoBjWrl2ryMhIRUZGqkWLFurfv7++/vrrQpctja+//lpDhgwpVRnJycl65JFHlJ6erkcffdTV/nM/N998szIzM/N97vTp0/MsHxkZqW+++UYHDhxwm9a4cWO1atVK6enpkqR3331XkZGReuGFF1zlPf/884qMjNS7775bqteUU2RkpNauXVtm5eX2yy+/KDIyUuvXr3dNmzt3rq666iodOnSo3OoFgIuVl6cbAAD/Ra+//rrCwsK0cOFCPf300zp+/LjGjBnjtkyjRo00f/78EtexYcMGTZ48Wc2aNStxGVarVQ888ICCgoK0YcMG+fj4uOatWLFC48aN08svvyxvb+98n+/l5aXIyEhXyNq0aZMWLlyo559/3rXMhx9+qKysLN19993KyMiQr6+vWxkxMTGu33fu3Fni1+IpnTt31lVXXaU5c+aoTZs2cjgc+vTTT9WnTx/VqFHD080DgP8cAggAlEDdunXVsGFDdezYUenp6Zo+fboGDRqkChUquJYJCgpSkyZNSlT+zz//rEcffVR16tQpcRv37dvnOvMxe/Zsmc1mZWVlSZIyMjL0xhtv6J577lG1atVktVolSf7+/jKbs0+Om81mWSwWmUwmmUwmJSYm6ueff3YLGYcPH1ZmZqYCAgLk5eUlh8Mhk8nkmp8zdPwXA4gk3XfffXr00Ud15MgR7d69WwcOHNC0adM83SwA+E8igABAKd12221avny5fvvtN/Xr169Myly3bp3efvttbd26VevWrSv285OTkzVixAhVrlxZu3btUqdOnfJd7v3339f777/verx06VLVrVvXbRmTyaSXX35Zn332mSwWi7KystyClc1mk8Ph0Pfff6+srCz9/vvvqlSpkiSpadOm+vvvv3X06FE5HA5ZrdYShzJP6t69u2rVqqV58+YpJiZG3bt3L1U4BIBLGdeAAEApNWjQQJK0d+9et+mFXQOyY8cODR06VE2bNlXXrl01e/Zst/lPPPFEgaGhKIKCgjRr1izNnj1bFotFH3zwgdavX6/169dr5syZkuR6vH79ei1dulSS3LpoSZLdbpeXl5fGjx+vHTt26K233lJYWJi2bdvm+rnpppvUt29fbd++Xdu3b1fFihVdz/fz81PNmjW1c+dOxcTEqEaNGvL393erY/bs2eratauaNWumvn376s8//3Sb/+STT+rJJ5/UiRMn9Nhjj6lt27Y6ePBgvq/79OnT6tatmx5++GHZ7fYSr7/czGaz7rvvPn3++ef6888/dd9995VZ2QBwqSGAAEAphYaGSpISEhKKtHxcXJyGDRumsLAwffjhhxo+fLheffVVt4vZc3aDKqlatWrJx8dHdrvd1ZXq3I8kt8fnpuWuNy0tTd7e3vL29pbJZJLNZpPkvLbk3I/NZnPt7Ht5ebl1v5KcF4nHxMRo586dql+/vtu8JUuWaMqUKRo0aJBmzZqlVq1a6cEHH8wzmlZ8fLxuv/12mUwmjRkzRuHh4Xleb3Jysu69915deeWVeu211/K8ljNnzujAgQOKi4sr7qqUJPXp00d+fn5q1aqVGjVqVKIyAAB0wQKAUsu9w30+c+fOldls1htvvCFvb29dffXVWrt2rRYtWqQBAwaUadsyMjJks9k0YsSIPPNatmx53uenp6crJCTE9TgtLU3x8fF5nnv99dcXWEb9+vW1c+dO2e12RUZGunUpq1Klil577TXdeOONkqTAwEDNmzdP+/btU9OmTV3L/fzzz3ryySc1fPjwAl/nqFGjZLPZ9O677+Z7Uf1rr72mBQsW6N5779Xjjz9+3tee265duxQbG6v09HTFx8crLCys2GUAAAggAFBqiYmJkrLPhJzPuR3Zxo0bu00/d91EWYqPj5ckff/996pdu7Yk5+hagwcPdrsg/Pjx4/l2+UpKSlKlSpWUmZmpxMREde3aVZs2bcq3rvT09DwjYEnOAPLdd9/J4XCod+/ebgHk6quv1qpVq/Tss89q8+bNrm5sqampbmXUrVtXd955Z4Gv84UXXpDValVKSoqSk5Pl5+dX4LIlNW3aNLVr107//vuv5syZowcffLDM6wCASwEBBABKadeuXZKU5+LtwjRt2tRtKFtJrm5QZenff/+VJHl7e7tGujp3n45zj6W8O/znHD9+XI0aNdLevXs1YMAAmUwm2e12BQYGupbJzMyU1WrV5MmTdeutt+Ypo379+q525O6C9dprr+mzzz7Tbbfdpvvvv1+tWrXStddem6eMJk2aFNotzWQyaeHChRo5cqTeeecdTZ48Oc8yL7/8sl5++eUCyyjM7t27tWLFCs2aNUv//POPZs6cqbvuuktBQUElKg8ALmUEEAAopa+++kq+vr5Fvmi8Xr162rx5s+rUqeO66Ds6OlobNmzQM888U6Zt27p1qySpW7dueeYVpQvWgQMHFBUVpQYNGmjbtm3au3evBg4cqNmzZ6thw4ay2+269957ZTabC+w+VrNmTfn7+8vhcKhWrVpu87766isNGzZMDz30kKS8F/IX1cSJE1WxYkU9/vjjGjZsmAYPHuwaHOCckydPKikpSeHh4YqIiChW+R988IHq1auna665Rk2bNtX777+vefPmcTE6AJQAF6EDQAns2bNHf/zxh8aOHavo6Gg98cQTRb4m4I477lBGRoYeeeQRrV69Wt99950mTZpUJhee5+RwOLR48WJ16dJFO3fudP3MmzdPktym/frrr3mef+rUKe3du9ftWow6depozJgxGjlypPbu3atJkybp6NGjeu211wq8FsZsNqtOnTqqW7duntcYHh6u1atXa/369a4wIsl1sXtReXk5j6e1bdtW11xzjaZMmZJnmTfffFO9evXSRx99VKyyDxw4oO+//1533XWXJCk4OFgDBgzQ7NmzCzxzBAAoGAEEAErg8ccf1+jRo3Xo0CG99957GjJkSJGfGxERodmzZyspKUn33XefXnnlFfXv319jx44t0zZ+9tln2rVrl2un/py0tDRJzoByzunTpyW5dwNbtmyZKlSokKfb1NChQ9WiRQv17dtX0dHRmjFjxnnDV/369fOUIzm7RaWnp+vee+/VvHnz9Nhjjyk8PFwbN24szkt18/jjj2vdunVasWJFicvI6YMPPlBERIR69+7tmnbnnXcqMTFRX375ZZnUAQCXEpMj5zcQAOCiEBsbqxtuuEFdu3bNc63J999/r4cfflhbtmyRj4+P+vTpo3379qlJkyb6+uuvXdd59OzZU126dNEDDzyg48ePa//+/frrr7+0atUqnTlzRp06ddKmTZt04sQJNW/eXHXq1FF4eLiqVq2qm2++udijgwEALg0EEAC4SJ06dUphYWH5Dkmb06FDh2QymVS9enXXNIfDoWXLlql+/foym826/fbbVbt2bTVp0kQdOnRQu3btXGdLdu/erTVr1mjbtm3avXu3OnbsqEcffbRcXxsA4L+LAAIAAADAMFwDAgAAAMAwBBAAAAAAhiGAAAAAADAMAQQAAACAYQggAAAAAAxDAAEAAABgGAIIAAAAAMMQQAAAAAAYhgACAAAAwDAEEAAAAAC
"text/html": [
"\n",
" <div style=\"display: inline-block;\">\n",
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
" Figure\n",
" </div>\n",
" <img src='
" </div>\n",
" "
],
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(2,1)\n",
"ax[0].plot([i+1 for i in range(len(AngleMarkX.columns))],RXdescibe.loc['mean'],linestyle = '-.',marker = 'o',color='w')\n",
"AngleMarkX.boxplot(ax=ax[0])\n",
"ax[0].axhline(0,c='orange',ls='-.',label=r'Mean_X:$0um\\pm0.10um$')\n",
"for i in range(len(AngleMarkX.columns)):\n",
" ax[0].annotate(round(RXdescibe.loc['mean'][i],2), \n",
" xy=(i+1,RXdescibe.loc['mean'][i]),\n",
" xytext=(i+0.95,RXdescibe.loc['mean'][i]+2),\n",
" fontsize=15,\n",
" color=\"r\")\n",
"ax[0].legend()\n",
"ax[0].set_title('mean_X/Day')\n",
"labels = ax[0].get_xticklabels()\n",
"plt.setp(labels, rotation=90)\n",
"ax[1].plot([i for i in AngleMarkX.columns],RXdescibe.loc['3sigma'],marker = 'o')\n",
"ax[1].axhline(0.8,c='orange',ls='-.',label=r'3sigma_X:$<0.800um$')\n",
"for i in range(len(AngleMarkX.columns)):\n",
" ax[1].annotate(round(RXdescibe.loc['3sigma'][i],3), \n",
" xy=(i,RXdescibe.loc['3sigma'][i]),\n",
" xytext=(i,RXdescibe.loc['3sigma'][i]),\n",
" fontsize=15,\n",
" color=\"r\")\n",
"ax[1].legend() \n",
"ax[1].set_title('3sigam_X/Day')\n",
"labels = ax[1].get_xticklabels()\n",
"plt.setp(labels, rotation=90)\n",
"# ax[2].plot([i for i in AngleMarkX.columns],RXdescibe.loc['range'],marker = 'o')\n",
"# for i in range(len(AngleMarkX.columns)):\n",
"# ax[2].annotate(round(RXdescibe.loc['range'][i],3), \n",
"# xy=(i,RXdescibe.loc['range'][i]),\n",
"# xytext=(i,RXdescibe.loc['range'][i]),\n",
"# color=\"r\")\n",
"# ax[2].set_title('Range_X/Day')\n",
"plt.suptitle('Die1 角度MarkX')\n",
"fig.tight_layout()\n",
"plt.savefig('Die1/Die1角度MarkX.jpg',dpi=200)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "fca6defb",
"metadata": {},
"source": [
"### 角度MarkY"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "389557c5",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>01.07.2-Die1</th>\n",
" <th>01.08.1-Die1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>74.000000</td>\n",
" <td>74.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>-0.165162</td>\n",
" <td>-0.327986</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>0.374514</td>\n",
" <td>0.264367</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>-1.153000</td>\n",
" <td>-1.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>-0.364500</td>\n",
" <td>-0.555500</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>-0.153000</td>\n",
" <td>-0.311000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>0.076500</td>\n",
" <td>-0.149500</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>0.589000</td>\n",
" <td>0.429000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>range</th>\n",
" <td>1.742000</td>\n",
" <td>1.429000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3sigma</th>\n",
" <td>1.123542</td>\n",
" <td>0.793101</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 01.07.2-Die1 01.08.1-Die1\n",
"count 74.000000 74.000000\n",
"mean -0.165162 -0.327986\n",
"std 0.374514 0.264367\n",
"min -1.153000 -1.000000\n",
"25% -0.364500 -0.555500\n",
"50% -0.153000 -0.311000\n",
"75% 0.076500 -0.149500\n",
"max 0.589000 0.429000\n",
"range 1.742000 1.429000\n",
"3sigma 1.123542 0.793101"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"AngleMarkY = TotalData['M1Y'].dropna(subset='QX8800SP_Index').set_index('QX8800SP_Index').iloc[:,die_nums:]\n",
"RYdescibe = describe_3s(AngleMarkY)\n",
"RYdescibe"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "c7a1606f-4530-4fa6-89ce-892a57c06493",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "57db526438b74e28b9de1114322faef8",
"version_major": 2,
"version_minor": 0
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAImCAYAAACrXu7BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACFX0lEQVR4nO3dd3RU1drH8d+09E7vLYgoRZqAgiigKKACdkDEKyIiNlS88NoQC4pcVKzYEMUGiijgtZfLvSggUkTp0qSTPkkmmfL+MWQmkwLJJDkTyPezFis5be89Z8KZ88yz9z4mj8fjEQAAAAAYwBzqBgAAAACoOQhAAAAAABiGAAQAAACAYQhAAAAAABiGAAQAAACAYQhAAAAAABiGAAQAAACAYQhAAAAAABiGAAQAAACAYQhAAAAAABiGAAQAaohXXnlFL7zwQqWU9eijj+r999+vlLIAADULAQgA1ADbtm3TSy+9pBYtWlRKebm5uXrrrbcC1uXn5ysrK6tSygcAnLoIQACgHH755Re1adNGbdq0UadOnXTllVdqwYIFx923IhYsWKDrr7++QmVkZWXp7rvvlsPh0MSJE33tL/g3bNgw5efnl3jsq6++Wmz/Nm3a6OOPP9auXbsC1rVr105dunSRw+GQJM2ePVtt2rTRY4895ivv0UcfVZs2bTR79uwKvabC2rRpo19++aXSyitq6tSp6tOnj5xOp29dTk6Ozj777Ep9HQBQU1hD3QAAOBk988wzSkhI0KeffqoHHnhABw4c0O233x6wz5lnnqmFCxcGXcfq1as1bdo0dezYMegy7Ha7JkyYoJiYGK1evVphYWG+bd98843uv/9+TZ8+XTabrcTjrVar2rRp4wuy1qxZo08//VSPPvqob5/XX39dTqdTN910k/Ly8hQeHh5QxqZNm3y/b968OejXEir/+Mc/9OGHH+rLL7/UoEGDJEmLFi1SXl6eRowYEeLWAcDJhwAEAIKQnJystm3bqnfv3nI4HHr11Vc1fPhw1apVy7dPTEyM2rdvH1T533//vSZOnKhWrVoF3cYdO3b4Mh9z586V2Wz2fYufl5enmTNnasyYMWrUqJHsdrskKTIyUmazPzluNptlsVhkMplkMpmUkZGh77//PiDI2Lt3r/Lz8xUVFSWr1SqPxyOTyeTbXjjoOBkDkCZNmujiiy/W22+/rUGDBsnj8eidd97RsGHDlJSUFOrmAcBJhwAEACrommuu0ddff63//Oc/GjJkSKWUuXLlSj377LNav369Vq5cWe7js7KyNHbsWNWtW1dbtmxRnz59Stzv5Zdf1ssvv+xbXrp0qZKTkwP2MZlMmj59ut577z1ZLBY5nc6AwMrlcsnj8eiLL76Q0+nU8uXLVadOHUlShw4d9Pvvv2vfvn3yeDyy2+1BB2WhdPPNN2vIkCH67bfflJGRoV27dmnOnDmhbhYAnJQYAwIAFXT66adLkrZv3x6w/nhjQP7880+NGjVKHTp0UL9+/TR37tyA7ffdd1+pQUNZxMTE6I033tDcuXNlsVj0yiuvaNWqVVq1apVee+01SfItr1q1SkuXLpWkgC5akuR2u2W1WjV58mT9+eefmjVrlhISErRhwwbfv6FDh+ryyy/Xxo0btXHjRtWuXdt3fEREhJo2barNmzdr06ZNatKkiSIjIwPqmDt3rvr166eOHTvq8ssv1//+97+A7f/85z/1z3/+UwcPHtQ999yj7t27a/fu3SW+7iNHjqh///6666675Ha7gz5/RbVt21a9evXS22+/rbffflsXX3yxmjRpUmnlA0BNQgYEACooPj5ekpSenl6m/VNTUzV69Gh1795dr7/+urZs2aInnnhC0dHRuuqqqyQpoBtUsJo1aybJG0QUdKWSVOxn4d+L1pubmyubzeYbI+JyuSTJ12WrYF3Bzb7VWvxjpU2bNtq0aZM8Ho9OO+20gPP0+eef68knn9SkSZPUsWNHLVu2THfccYd++OEHxcTE+PZLS0vTddddp86dO+v2229XYmJisXqysrJ08803q0WLFpoxY0ax13L06FFlZWUpLi6uxONPZMyYMfrHP/4hj8ejTz75pNzHAwC8CEAAoIIKj3coi3fffVdms1kzZ86UzWbT2WefrV9++UWLFy/2BSCVJS8vTy6XS2PHji22rXPnzic83uFwKC4uzrecm5urtLS0YsdecsklpZZx2mmnafPmzXK73WrTpk1Al7J69eppxowZuuyyyyRJ0dHRmj9/vnbs2KEOHTr49vv+++/1z3/+UzfeeGOpr3P8+PFyuVyaPXt2iYPqZ8yYoUWLFunmm2/Wvffee8LXXlTPnj3VqlUrxcbG6owzzij38QAALwIQAKigjIwMSf5MyIls2bJFKSkpateuXcD6gnETlSktLU2S9MUXX6hly5aSvLNrjRgxImBA+IEDB0rs8pWZmak6deooPz9fGRkZ6tevn9asWVNiXQ6Ho9gMWJI3AFmyZIk8Ho8GDRoUEICcffbZ+umnn/Twww/rt99+83Vjy8nJCSgjOTlZN9xwQ6mv87HHHpPdbld2draysrIUERFR6r4VkZiYqNjY2CopGwBqCgIQAKigLVu2SFKxwdvH06FDh4CpbKXALlGV5a+//pIk2Ww2X7epgud0FO5GVfSGv8CBAwd05plnavv27brqqqtkMpnkdrsVHR3t2yc/P192u13Tpk3T1VdfXayM0047zdeO0047LWDbjBkz9N577+maa67RuHHj1KVLF5133nnFymjfvv1xu6WZTCZ9+umnuvXWW/Xcc89p2rRpxfaZPn26pk+fXmoZAABjEIAAQAV99NFHCg8PL/Og8datW+u3335Tq1atfIO+ly1bptWrV+uhhx6q1LatX79ektS/f/9i28rSBWvXrl3q27evTj/9dG3YsEHbt2/Xtddeq7lz56pt27Zyu926+eabZTabS+0+1rRpU0VGRsrj8fjGpRT46KOPNHr0aN15552Sig/kL6sHH3xQtWvX1r333qvRo0drxIgRvskBChw6dEiZmZlKTExk+lwACCFmwQKAIGzbtk3//e9/NWnSJC1btkz33XefEhISynTsyJEjlZeXp7vvvlsrVqzQkiVLNHXq1EoZeF6Yx+PRZ599pgsuuECbN2/2/Zs/f74kBaz78ccfix1/+PBhbd++PWAsRqtWrXT77bfr1ltv1fbt2zV16lTt27dPM2bMKHUsjNlsVqtWrZScnFzsNSYmJmrFihVatWqVLxiR/IPdy6pg8Hv37t117rnn6sknnyy2z7/+9S8NHDhQb775ZrnKBgBULgIQAAjCvffeq9tuu0179uzRiy++qOuvv77MxyYlJWnu3LnKzMzULbfcoqeeekpXXnmlJk2aVKltfO+997RlyxbfTX2B3NxcSd4ApcCRI0ckBXYD++qrr1SrVq1i3aZGjRqlTp066fLLL9eyZcs0Z86cEwZfp512WrFyJG+3KIfDoZtvvlnz58/XPffco8TERP3666/leakB7r33Xq1cuVLffPNN0GUAAKqOyVP4EwgAcEpISUnRpZdeqn79+hUba/LFF1/orrvu0tq1axUWFqbBgwdrx44dat++vRYsWOAb53HxxRfrggsu0IQJE3TgwAHt3LlT69at008//aSjR4+qT58+WrNmjQ4ePKizzjpLrVq1UmJiourXr69hw4aVe3YwAEDNQAACAKeow4cPKyEhocQpaQvbs2ePTCaTGjdu7Fvn8Xj01Vdf6bTTTpPZbNZ1112nli1bqn379urVq5d69Ojhy5Zs3bpVP//8szZs2KCtW7eqd+/emjhxYpW+NgDAyYsABAAAAIBhGAMCAAAAwDAEIAAAAAAMQwACAAAAwDAEIAAAAAAMQwACAAAAwDAEIAAAAAAMQwACAAAAwDAEIAAAAAAMQwACAAAAwDAEIAAAAAAMQwACAAAAwDAEIAAAAAAMQwACAAAAwDAEIAAAAAAMQwACAAAAwDAEIAAAAAAMQwACAAAAwDAEIAAAAAAMQwACAAAAwDAEIAAAAAAMQwACAAAAwDAEIAAAAAAMQwACAAAAwDAEIAAAAAAMQwA
"text/html": [
"\n",
" <div style=\"display: inline-block;\">\n",
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
" Figure\n",
" </div>\n",
" <img src='
" </div>\n",
" "
],
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(2,1)\n",
"ax[0].plot([i+1 for i in range(len(AngleMarkY.columns))],RYdescibe.loc['mean'],linestyle = '-.',marker = 'o',color='w')\n",
"AngleMarkY.boxplot(ax=ax[0])\n",
"ax[0].axhline(0,c='orange',ls='-.',label=r'Mean_Y:$0um\\pm0.10um$')\n",
"for i in range(len(AngleMarkY.columns)):\n",
" ax[0].annotate(round(RYdescibe.loc['mean'][i],2), \n",
" xy=(i+1,RYdescibe.loc['mean'][i]),\n",
" xytext=(i+0.95,RYdescibe.loc['mean'][i]+2),\n",
" fontsize=15,\n",
" color=\"r\")\n",
"ax[0].legend()\n",
"ax[0].set_title('mean_Y/Day')\n",
"labels = ax[0].get_xticklabels()\n",
"plt.setp(labels, rotation=90)\n",
"ax[1].plot([i for i in AngleMarkY.columns],RYdescibe.loc['3sigma'],marker = 'o')\n",
"ax[1].axhline(0.8,c='orange',ls='-.',label=r'3sigma_Y:$<0.800um$')\n",
"for i in range(len(AngleMarkY.columns)):\n",
" ax[1].annotate(round(RYdescibe.loc['3sigma'][i],3), \n",
" xy=(i,RYdescibe.loc['3sigma'][i]),\n",
" xytext=(i,RYdescibe.loc['3sigma'][i]),\n",
" fontsize=15,\n",
" color=\"r\")\n",
"ax[1].legend() \n",
"ax[1].set_title('3sigam_Y/Day')\n",
"labels = ax[1].get_xticklabels()\n",
"plt.setp(labels, rotation=90)\n",
"# ax[2].plot([i for i in AngleMarkY.columns],RYdescibe.loc['range'],marker = 'o')\n",
"# for i in range(len(AngleMarkY.columns)):\n",
"# ax[2].annotate(round(RYdescibe.loc['range'][i],3), \n",
"# xy=(i,RYdescibe.loc['range'][i]),\n",
"# xytext=(i,RYdescibe.loc['range'][i]),\n",
"# color=\"r\")\n",
"# ax[2].set_title('Range_Y/Day')\n",
"plt.suptitle('Die1 角度MarkY')\n",
"fig.tight_layout()\n",
"plt.savefig('Die1/Die1角度MarkY.jpg',dpi=200)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "57aab54c-ca77-46e9-bdfa-becc3323ab8f",
"metadata": {},
"source": [
"## 角度"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "3b9aba3d-417d-4292-ac07-8c9d25d260b8",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>01.07.2-Die1</th>\n",
" <th>01.08.1-Die1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>74.000000</td>\n",
" <td>74.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>0.000403</td>\n",
" <td>0.000125</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>0.001847</td>\n",
" <td>0.001400</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>-0.003736</td>\n",
" <td>-0.003690</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>-0.000662</td>\n",
" <td>-0.000525</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>0.000436</td>\n",
" <td>0.000182</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>0.001683</td>\n",
" <td>0.001039</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>0.004913</td>\n",
" <td>0.003476</td>\n",
" </tr>\n",
" <tr>\n",
" <th>range</th>\n",
" <td>0.008649</td>\n",
" <td>0.007166</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3sigma</th>\n",
" <td>0.005540</td>\n",
" <td>0.004199</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 01.07.2-Die1 01.08.1-Die1\n",
"count 74.000000 74.000000\n",
"mean 0.000403 0.000125\n",
"std 0.001847 0.001400\n",
"min -0.003736 -0.003690\n",
"25% -0.000662 -0.000525\n",
"50% 0.000436 0.000182\n",
"75% 0.001683 0.001039\n",
"max 0.004913 0.003476\n",
"range 0.008649 0.007166\n",
"3sigma 0.005540 0.004199"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Angle = TotalData['Angle14'].dropna(subset='QX8800SP_Index').set_index('QX8800SP_Index').iloc[:,die_nums:].sort_index(axis=1)\n",
"Angdescibe = describe_3s(Angle)\n",
"Angdescibe"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "e4805a99-5123-41cf-ba9c-f7c0bbbec0fa",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.00026399185377218944"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Angdescibe.loc['mean'].mean()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "5ce2eec7-a959-4716-92a0-4aaad88b96b3",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "676b44c7b71b44d3bc3ae7f9fb2151be",
"version_major": 2,
"version_minor": 0
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAImCAYAAACrXu7BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACYtklEQVR4nOzdd1zU9R8H8Nf3JuPYIg7EgYqI4sQV5kwzt2Y5yjJHONJS0/RnzspRoZaaWZoNLdPMbZlmmRqCeyKIirkQZd4xbv7+ODk45gHHIfh6Ph5m9/18P+P7PfzevfkswWAwGEBERERERGQDovJuABERERERPT0YgBARERERkc0wACEiIiIiIpthAEJERERERDbDAISIiIiIiGyGAQgREREREdkMAxAiIiIiIrIZBiBERERERGQzDECIiIiIiMhmGIAQEREREZHNMAAhInqKrV27FqtWrbJKWQsXLsSPP/5olbJyUqlUUKvVVi83KSnJ6mUSEVHRGIAQET2lrl27hjVr1qBu3bpWKS8jIwPffPON2TGNRgOlUlniMpOTk/H6669j8+bNedLOnDmD0NBQ/P333yUq+91338XChQthMBhK3D4iIio+wcAnLxFRqZw4cQIjR44EADg4OMDX1xcvv/wyhgwZUuC5V69eLXF9W7duxa5du/D999+XuAylUolhw4YhKioq3/SAgABs2bIFUqk0T9qXX36J0NDQYtV3/vx5yOXyYuXJzMzE0KFDERAQgPnz50MikZjSoqOjsXjxYsycORM//PADhg0bhsaNGxer/IcPH2LcuHFo2bIl5syZU6y8RERUcpKiTyEiIkt88skncHV1xY4dOzBnzhzcv38fb731ltk5AQEB2LZtW4nrOHnyJBYtWoRmzZqVuAyVSoVJkyZBoVDg5MmTkMlkprSDBw9i5syZWLJkSb7BBwBIJBL4+flh69atAIDTp09jx44dWLhwoemcr7/+GlqtFqNHj4ZarS528AEAH374IapXr44PPvggT1p0dDT69u0LPz8/dO3aFTdv3ix2AFKlShWsX78eAwcORFBQEHr27FnsNhIRUfExACEispL69evD398fHTt2RGZmJr788ksMHz4cHh4epnMUCgWaNm1aovIPHz6MqVOnwtfXt8RtvH79Ot555x1kZmZi48aNEIlE0Gq1AAC1Wo1PP/0UY8aMQc2aNaFSqQAA9vb2EImyR+yKRCKIxWIIggBBEJCSkoLDhw+bBRm3b9+GRqOBg4MDJBIJDAYDBEGwuJ1RUVH4448/8Ntvv+WbHhQUhKlTpyIzMxMHDhzAkiVLSnI74ObmhiVLlmDmzJno1q2bWS8LERGVDT5piYjKwMsvv4w//vgD//zzDwYMGGCVMsPDw7FixQqcP38e4eHhxc6vVCoxbtw4VK1aFVFRUejUqVO+533xxRf44osvTK/37t2L+vXrm50jCAKWLFmCzZs3QywWQ6vVmgVWOp0OBoMB+/fvh1arxdGjR+Hp6WlxWzdv3oyBAwfCxcUl33RPT0/TvVi6dGmxys6tXbt2cHNzw+HDh/Hcc8+VuBwiIrIMJ6ETEZWBRo0aAQBiYmLMjp84cQJ+fn755rly5QpGjhyJwMBAdOvWDRs3bjRLf/fddwsMGiyhUCiwfv16bNy4EWKxGGvXrkVERAQiIiLw1VdfAYDpdUREBPbu3QsAZkO0AECv10MikWDWrFm4cuUKli9fDldXV1y4cMH0Z+DAgejfvz8uXbqES5cuoUqVKsVq6/nz54u8Vg8PD3Tp0qVUwUeWTp064dy5c6Uuh4iIisYeECKiMpD1m/vk5GSLzk9MTMTrr7+Otm3b4uuvv0ZUVBQ++ugjODo6miaz5xwGVVK1a9cGYAwisoZSAcjzd87/z11vRkYGpFKpaY6ITqcDANOQraxjer0eAEo0rOnu3bvw8vIqdr6Sqlq1Kk6fPm2z+oiInmYMQIiIykBx5jsAwA8//ACRSIRPP/0UUqkUbdq0wYkTJ7Bz5858V9MqDbVaDZ1Oh3HjxuVJa9myZZH5MzMz4ezsbHqdkZGBpKSkPHl79epV4jZKpVKzgKasqVSqAifdExGRdTEAISIqAykpKQBQ4ByG3KKiopCQkIAmTZqYHbfG8KLcsjbg279/P+rVqwfAuLrWiBEjzJYHvn//fr7DoFJTU+Hp6QmNRoOUlBR069atwN6DzMzMEq2AVadOHURFRSEgIKDYeUsiKioKDRo0sEldRERPOwYgRERlIGt/jdyTtwsTGBhotpQtYD4kylpu3LgBwLyXITMzE4D5MKr09PR889+/fx8BAQGIiYnBkCFDIAgC9Ho9HB0dTedoNBqoVCosWrQIL730UrHb2LlzZ2zbtg0DBw4sdt7iSk5OxsGDBzFmzJgyr4uIiBiAEBGViZ9//hlyudziSeMNGjTAmTNn4Ovra5r0vW/fPpw8eRJz5861atvOnz8PAOjevXueNEuGYMXGxqJr165o1KgRLly4gJiYGAwdOhQbN26Ev78/9Ho9xo4dC5FIVOLhY4MHD8aXX36JAwcOoEePHiUqw1KhoaFo3ry5aeEAIiIqW1wFi4jISq5du4Zjx45hxowZ2LdvH9599124urpalPeVV16BWq3GO++8g3///Rd79uzBggULrDLxPCeDwYBdu3ahS5cuuHr1qunPpk2bAMDs2N9//50nf3x8PGJiYhAYGGg65uvri7feegvjx49HTEwMFixYgLt37+Ljjz8u9lyYLK6urpg9ezZmz55d4G7t1rBt2zbs3r0b8+bNK7M6iIjIHHtAiIisZPr06bC3t4e/vz9Wr16dbw9DQdzd3bFx40YsWbIEb775JlxcXPDiiy9iypQpVm3j5s2bERUVhf/9739mxzMyMgDAbMPAhw8fAjAfBnbgwAF4eHigYcOGZvlHjhyJM2fOoH///rC3t8f27dstDr4KMmDAANy6dQvDhw/HF198gaCgoFKVl9uGDRvw2WefYfXq1ahbt65VyyYiooIJBoPBUN6NICKispeQkIC+ffuiW7dueeaa7N+/H2+//TbOnj0LmUyGPn364Pr162jatCm2bt1qmufx/PPPo0uXLpg0aRLu37+Pmzdv4ty5czhy5AgePXqETp064fTp04iLi0Pz5s3h6+sLNzc3VKtWDYMGDSpRj8jWrVvRsmXLUu0An5/9+/ejZs2aZr05RERU9hiAEBE9ReLj4+Hq6lrkkrP//fcfBEGAt7e36ZjBYMCBAwfQsGFDiEQiDBs2DPXq1UPTpk0RHByMdu3amXpLoqOjERYWhgsXLiA6OhodO3bE1KlTy/TaiIioYmAAQkRERERENsNJ6EREREREZDMMQIiIiIiIyGYYgBARERERkc0wACEiIiIiIpthAEJERERERDbDAISIiIiIiGyGAQgREREREdkMAxAiIiIiIrIZBiBERERERGQzDECIiIiIiMhmGIAQEREREZHNMAAhIiIiIiKbYQBCREREREQ2wwCEiIiIiIhshgEIERERERHZDAMQIiIiIiKyGQYgRERERERkMwxAiIiIiIjIZhiAEBHRU2X79u0wGAzl3QwioqcWAxAiIiqR5ORk+Pv7Y+XKlWVaT9euXbF9+3arlHXu3Dn8888/EAQB7733Hvz8/NCoUSO0b98eb731Fq5evWqVeoiIqGAMQIiIqET+/fdf6PV6HDt2rLybYrEVK1bg7bffNr2uU6cOfv75Z7z33nuIiorC0KFDGYQQEZUxBiBERFQix44dg0wmw8WLF5GSklLezSnS4cOHUa9ePdSuXdt0zM7ODoGBgejfvz++++47AMYghYiIyg4DECIiKpFjx47hlVdeAWDsDXmS6fV6fPnll5g4cWKB53h5eaFLly74559/oNFobNg6IqKnCwMQIqInyKuvvop58+Zh6NChaNmyJfbt24cJEyagefPmWL58OQBg37596NOnDwIDAzFgwIA8X/4vXLiAESNGoEWLFujYsSM++eQT06Tr27dvw8/PD1evXsWMGTPQsmVLPPvss/j111+L1c7Y2FjcuXMHXbt2hb+/v9kwLEvr2LRpEzp16oR27dph6dK
"text/html": [
"\n",
" <div style=\"display: inline-block;\">\n",
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
" Figure\n",
" </div>\n",
" <img src='
" </div>\n",
" "
],
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(2,1)\n",
"ax[0].plot([i+1 for i in range(len(Angle.columns))],Angdescibe.loc['mean'],linestyle = '-.',marker = 'o',color='w')\n",
"Angle.boxplot(ax=ax[0])\n",
"ax[0].axhline(0,c='orange',ls='-.',label=r'Mean_Angle:$0°\\pm0.0005°$')\n",
"for i in range(len(Angle.columns)):\n",
" ax[0].annotate(round(Angdescibe.loc['mean'][i],5), \n",
" xy=(i+1,Angdescibe.loc['mean'][i]),\n",
" xytext=(i+0.95,Angdescibe.loc['mean'][i]),\n",
" fontsize=12,\n",
" color=\"r\")\n",
"ax[0].legend()\n",
"ax[0].set_title('mean_Angle/Day')\n",
"labels = ax[0].get_xticklabels()\n",
"plt.setp(labels, rotation=90)\n",
"ax[1].plot([i for i in Angle.columns],Angdescibe.loc['3sigma'],marker = 'o')\n",
"ax[1].axhline(0.001,c='orange',ls='-.',label=r'3sigma_Angle:$<0.001°$')\n",
"for i in range(len(Angle.columns)):\n",
" ax[1].annotate(round(Angdescibe.loc['3sigma'][i],5), \n",
" xy=(i,Angdescibe.loc['3sigma'][i]),\n",
" xytext=(i,Angdescibe.loc['3sigma'][i]),\n",
" fontsize=12,\n",
" color=\"r\")\n",
"ax[1].legend() \n",
"ax[1].set_title('3sigam_Angle/Day')\n",
"labels = ax[1].get_xticklabels()\n",
"plt.setp(labels, rotation=90)\n",
"# ax[2].plot([i for i in Angle.columns],Angdescibe.loc['range'],marker = 'o')\n",
"# for i in range(len(Angle.columns)):\n",
"# ax[2].annotate(round(Angdescibe.loc['range'][i],3), \n",
"# xy=(i,Angdescibe.loc['range'][i]),\n",
"# xytext=(i,Angdescibe.loc['range'][i]),\n",
"# color=\"r\")\n",
"# ax[2].set_title('Range_Angle/Day')\n",
"plt.suptitle('Die1 角度(°)')\n",
"fig.tight_layout()\n",
"plt.savefig('Die1/Die1角度.jpg',dpi=200)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "639173af",
"metadata": {},
"source": [
"### 补偿值计算"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "7b6651ce-0935-4386-b6a4-634fd78aaee3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 1.0, 'Die1对位MarkX局部补偿um')"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9786ef461eff4be6aedd6df21a4710d1",
"version_major": 2,
"version_minor": 0
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAImCAYAAACrXu7BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeZgcZbn276rqvXumZ81kX8gkISQhIWEXJSwCimBQwIOAIiKi4kLUiB4VOQIKR/w8KhxEEBRckFVlOSCroOwkJAGzJ2RPZument67q+r7o+qtequ7qpeZ7p6Z5PldFxeZ6tq6u7rqvd/7WQRVVVUQBEEQBEEQBEE0AHGkT4AgCIIgCIIgiIMHEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRAEQRAEQTQMEiAEQRA15u2338YFF1yAnTt32r6eSqWgKErR8ng8DlVV6316DaO/vx979+6t6L9IJOK4n3Xr1iGbzQ75PGRZRjweH/L2ALBjx45hbV8p0Wi0LtdAqc+XIAii0ZAAIQiCqANvvfWW40Dyvvvuw4c//GFs2bLFWBaJRHDaaafhoYceatQp1p2rrroKJ554YkX/ffe737XdRzabxZe+9CVcf/31Qz6P7373u7jyyiuLln//+9/HBRdcUHb73bt349RTT8Vzzz2Hbdu2QZZlAMCvf/1rnH322cZ6q1evRn9//5DPc9euXTj//PPx9NNPD3kfdqiqik996lP49a9/XdP9EgRBDBUSIARBjHpeffVVzJkzB3PmzMERRxyBc889F/fff7/jesPh/vvvx8UXX1y0fN26dfjNb36De+65B/fee6/x3xtvvFG0rt/vBwAIgmB7jGeeeQaKomD69OnGstbWVpx44on46U9/isHBQdvtTj75ZMyZMwfvvPMOAG1guXjxYsyZM8fRbamWhx56CCeffLLj688//zzmzJmD119/3Vh277334rDDDityCdxuN8455xysX7++5H+f+9zn4PV6Ldvu2LEDGzZswI4dO3DhhRfisccew8qVK7Fx40asW7cO8XjcuCb4/15++eWic7788svxxhtv4Pnnn7csVxQFuVyu7GfywgsvYMKECTjhhBNwxRVX4MYbbwQAiKJofMfJZBJf/epX8b//+79l92dHf38/LrroIpx11ln44Ac/OKR9OCEIAn7+85/jvvvuw1133VXTfRMEQQwF10ifAEEQRKX85Cc/QUtLCx555BF897vfxd69e/HlL3/ZeH3evHl44IEHhrz/N954Az/84Q+xcOHCotdisRjWrVsHl8tlDDqfffZZXHbZZZg/fz48Hg9E0Tqno6oqMpkMJEmCy6Xdbrdt24bXX38dy5cvRyaTwdatW43B92mnnQYA2LJlC0KhEAAtfGj8+PFobm429rtu3TrMmzcPO3fuRCKRGPL7HQpLly7FYYcdht/97nc46qijoKoq7rnnHnzkIx/BlClTLOu6XC6k02n09PSU3GcqlSpyi372s5/hmWeeMQb5giDgs5/9LHK5HDwejyGAbrrpJhx//PG499578ac//QlHHXUUAE1cJJNJeL1ezJgxA4899himTZtmOYbf7zfEYikefPBBnHvuuXC73bj22mtxySWX4Oijj4YkSZAkCQBw7bXXorm5Gd/4xjfK7q8QVVXxrW99C6eeeqrleq4lM2bMwJ133onzzz8fixcvtr3GCYIgGgUJEIIgxgzd3d2YO3cu3v/+9yOTyeBXv/oVPvnJT6K9vR0AEAqFsGDBgiHt+7nnnsPy5csxc+ZM29ePPvpoHH300ZZlxxxzDJqbmx0Hc6eeeioALVTnAx/4AADgnnvugaqqOOWUU/Dee+/h/PPPLxIvf//7341/5/N5/OQnPzH2BQDr168HoAmRkeDzn/88li9fjl27dmHjxo147733cOuttxatJ4oinnjiCTzxxBNl98m/PwC4+eab8eCDD2LHjh342te+BgB46qmncO211+Khhx6CKIrw+/1obm5GZ2cnVq9ejVNOOcUQelu3bsWHP/zhouP87ne/wzHHHGNZlkqlsGXLFsybN69o/ZUrV2LNmjWGK3bMMcfgf/7nf/C+970P9913n7HeySefjC984QtFTk4lPP/889i1axduueWWqrethmnTpmHFihW44YYbLOdOEATRaEiAEAQxJvnEJz6Bv//973jxxRexbNmyYe/vtddew89+9jOsXr0ar732WtHrqVQKN998M7785S8jHA5j165dGBgYwCmnnILjjjsOTU1NxuB38+bNOO+88/C3v/0NHR0dhpuxf/9+w6EJBoMYP3481q5dW9V5HnHEEYbwWL9+PRYuXIi33357OG+9ak477TRMmzYNv//977Fu3TqcdtppjsJt2bJlFeVvFLpHgOag3HbbbTj55JNx+OGH48knn8Shhx6Krq4u43UASCQSeP3113HbbbcZ206ZMgV///vf4fV64Xa78c1vfhPZbLZIfADAnXfeid///vf461//is7OTstrvCg44YQTEI1Gi0LreNGbz+dx3nnn4b/+67/KvmfGH/7wB1x44YXweDwVbzNUzj77bNx888149913cdhhh9X9eARBEHZQDghBEGOSQw89FIA22GeUygH597//jU996lM4/PDDccopp+Duu++2vP7Nb34TJ554ouPxZFnG6tWr8YUvfAGZTAYvvvgiDj30ULS1tcHv92Pv3r0IBoMIBoPw+XwAgEAggLa2NmNg+ZOf/KRohnzTpk24/vrrLVWxZFnGiSeeiJtuuqnoPGbPnm1xQGbPnm15vbe3F1dddRWOOeYYHH300fjqV79alBg9Z84cvPrqq3juuedw3nnn4dJLL3V8348//jjmz59vSYwWRRGf//zn8cc//hH/+te/8PnPf97xM0un0+jt7S373/79+41QrVwuhx07duCoo47CzJkz8fbbb2Pz5s146qmncO6552LHjh2IxWLGcZ577jk0NTXh2GOPNZZ5PB5MnToVXV1d2LRpE1599VV897vfRSKRwL///W/LeV522WUIBoNFifAvvPAC1qxZgwkTJhj7vPPOO/Hmm29izZo1xn+rV6/GW2+9hddffx0nnXRS1UJi9erVjtfexRdfjF/84heWZVdffTWuvvpq7Ny5E3PmzMFdd92F4447Dh/5yEfw8ssv46STTsIJJ5yA1atXF+3P7XbjuOOOa7hoJQiC4CEHhCCIMUk4HAYADAwMlF03EongkksuwTHHHIM77rgDGzZswA033IBgMIjzzjsPgP0MPE8oFMKdd96Jiy66CMuXL0c6nTYGjb/85S+xZs2akvknTz/9NP7yl7/gBz/4AX7wgx8YyzOZDH73u9/h1FNPNWbnt27dir1792LGjBlF+5k1axb+/Oc/Y9++fVi/fn1RwvyKFSuwbds23HTTTZAkCT/+8Y/xk5/8BDfccINlvf/7v//DU08
"text/html": [
"\n",
" <div style=\"display: inline-block;\">\n",
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
" Figure\n",
" </div>\n",
" <img src='
" </div>\n",
" "
],
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# BC_X = pd.concat([AlignMarkX[i]-AlignMarkX[i].mean() for i in AlignMarkX.columns[-3:]],axis=1)\n",
"BC_X = pd.concat([AlignMarkX[i] for i in AlignMarkX.columns[-3:]],axis=1)\n",
"BC_X.plot(marker='o')\n",
"plt.title('Die1对位MarkX局部补偿um')"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "61ce5e50-3b7b-4b70-8917-cc6bac2a1ced",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 1.0, 'Die1对位MarkY局部补偿um')"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4c19448191a146959190d604aa88c140",
"version_major": 2,
"version_minor": 0
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAImCAYAAACrXu7BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZhcZZn3/z2n9qWrq3rNDiFNQkwCIZF1mBGEcRxRBkai4wAOg4iCjo44qMzPURlXeNXXGUdfcXdQZ5AtoqiggLsgxIQkQDrpkJAEkl6rurvWU3XO8/vj1HOWqjpVp9auqr4/18VFutZTVec8z3M/3/v+3gJjjIEgCIIgCIIgCKIFiAt9AARBEARBEARBLB4oACEIgiAIgiAIomVQAEIQBEEQBEEQRMugAIQgCIIgCIIgiJZBAQhBEARBEARBEC2DAhCCIAiCIAiCIFoGBSAEQRAEQRAEQbQMCkAIgiAIgiAIgmgZFIAQBEEQBEEQBNEyKAAhCIIgCIIgCKJlUABCEARBEARBEETLoACEIAiCIAiCIIiWQQEIQRAEQRAEQRAtgwIQgiAIgiAIgiBaBgUgBEEQBEEQBEG0DApACIIgCIIgCIJoGRSAEARBEARBEATRMigAIQiCIAiCIAiiZVAAQhAEQRAEQRBEy6AAhCAIgiAIgiCIlkEBCEEQBEEQBEEQLYMCEIIgCIIgCIIgWgYFIARBEARBEARBtAwKQAiCIAiCIAiCaBkUgBAEQRAEQRAE0TIoACEIgiAIgiAIomVQAEIQBEEQBEEQRMugAIQgCIIgCIIgiJZBAQhBEARBEARBEC2DAhCCIAiCIAiCIFoGBSAEQRAEQRAEQbQMCkAIgiAIgiAIgmgZFIAQBEEQBEEQBNEyKAAhCIIgCIIgCKJlUABCEARBEARBEETLoACEIAiCIAiCIIiWQQEIQRAEQRAEQRAtgwIQgiAIgiAIgiBaBgUgBEEQBEEQBEG0DApACIIgCIIgCIJoGRSAEARBEARBEATRMigAIQiCIAiCIAiiZVAAQhAEQRAEQRBEy6AAhCAIosE888wzeMtb3oJjx46VvD+VSkFRlKLb4/E4GGPNPryWMTMzgxMnTtj6LxqNWr7Ovn37IElSzcchyzLi8XjNzweAo0eP1vV8u8RisaacA+W+X4IgiFZDAQhBEEQT+NOf/mS5kLz77rvxute9Di+88IJ2WzQaxWte8xrcf//9rTrEpvO+970Pr3rVq2z99+EPf7jka0iShHe961345Cc/WfNxfPjDH8a73/3uots/8pGP4C1veUvF57/88su45JJL8Pjjj+Pw4cOQZRkA8LWvfQ2XXXaZ9rjdu3djZmam5uN86aWX8KY3vQm/+MUvan6NUjDG8Na3vhVf+9rXGvq6BEEQtUIBCEEQbc+TTz6JdevWYd26dTjzzDNx5ZVX4p577rF8XD3cc889uOaaa4pu37dvH775zW/irrvuwne/+13tv6effrrosT6fDwAgCELJ93j00UehKApOPvlk7bZIJIJXvepV+PznP4/5+fmSz3v1q1+NdevW4dlnnwWgLiy3bNmCdevWWaot1XL//ffj1a9+teX9t912G171qlchl8tpt6VSKZx99tn44he/aHqsy+XCFVdcgdHR0bL/vf3tb4fH4zE99+jRo9i/fz+OHj2Kq666Cg899BB27tyJAwcOYN++fYjH49o5YfzvD3/4Q9Ex33DDDXj66afxy1/+0nS7oijIZrMVv5Nf/epXWLp0KS644AK8853vxO233w4AEEVR+42TySTe+9734v/9v/9X8fVKMTMzg6uvvhpveMMb8Jd/+Zc1vYYVgiDgP//zP3H33XfjW9/6VkNfmyAIohacC30ABEEQdvnsZz+LcDiM7du348Mf/jBOnDiBf/qnf9Lu37BhA+69996aX//pp5/Gxz/+cZxxxhlF983NzWHfvn1wOp3aovOxxx7D9ddfj40bN8LtdkMUzXs6jDFkMhk4HA44nepwe/jwYTz11FO4+eabkclkcOjQIW3x/ZrXvAYA8MILLyAYDAJQ04eWLFmCUCikve6+ffuwYcMGHDt2DIlEoubPWwvXXXcd7r77bjz88MO49NJLAQAPPPAAJEnCVVddZXqs0+lEOp3G5ORk2ddMpVJFatEXvvAFPProo9oiXxAEvO1tb0M2m4Xb7cZTTz0FALjjjjtw/vnn47vf/S7+93//F2eddRYANbhIJpPweDxYvXo1HnroIZx00kmm9/D5fFqwWI777rsPV155JVwuF2677TZce+21OPvss+FwOOBwOACogVkoFMK//Mu/VHy9Qhhj+OAHP4hLLrnEdD43ktWrV+Mb3/gG3vSmN2HLli0lz3GCIIhWQQEIQRAdw8jICNavX48///M/RyaTwZ133om///u/R39/PwAgGAxi06ZNNb32448/jptvvhlr1qwpef/ZZ5+Ns88+23TbOeecg1AoZLmYu+SSSwCoqTp/8Rd/AQC46667wBjDxRdfjBdffBFvetObioKXn//859q/c7kcPvvZz2qvBQCjo6MA1ECk1axcuRKvfe1r8Z3vfAeXXnopGGO466678Ld/+7fo6+szPVYURfz0pz/FT3/604qva/x8APC5z30O9913H44ePYp//ud/BgA88sgjuO2223D//fdDFEX4fD6EQiEMDg5i9+7duPjii7VA79ChQ3jd615X9D7//d//jXPOOcd0WyqVwgsvvIANGzYUPX7nzp3Ys2ePpoqdc845+I//+A/82Z/9Ge6++27tca9+9atx4403Fik5dvjlL3+Jl156CV/60peqfm41nHTSSfjABz6AT33qU6ZjJwiCaDUUgBAE0ZG8+c1vxs9//nP85je/weWXX1736/3xj3/EF77wBezevRt//OMfi+5PpVL43Oc+h3/6p39Cb28vXnrpJczOzuLiiy/Geeedh56eHm3xe/DgQWzbtg0/+tGPMDAwoKkZExMTmkITCASwZMkS7N27t6rjPPPMM7XAY3R0FGeccQaeeeaZej561bz97W/H5Zdfjp07d2Jubg4vvvgivvrVr5Z87OWXX26rfqNQPQJUBeUrX/kKXv3qV+P000/Hww8/jNNOOw3Dw8Pa/QCQSCTw1FNP4Stf+Yr23JUrV+LnP/85PB4PXC4XbrnlFkiSVBR8AMA3vvENfO9738ODDz6IwcFB033GoOCCCy5ALBYrSq0zBr25XA7btm3Dv//7v1f8zJzvf//7uOqqq+B2u20/p1Yuu+wyfO5zn8Nzzz2HV7ziFU1/P4IgiFJQDQhBEB3JaaedBkBd7HPK1YA8//zzeOtb34rTTz8dF198Mb797W+b7r/lllvwqle9yvL9ZFnG7t27ceONNyKTyeA3v/kNTjvtNPT19cHn8+HEiRMIBAIIBALwer0AAL/fj76+Pm1h+dnPfrZoh3xsbAyf/OQnTa5YsizjVa96Fe64446i41i7dq1JAVm7dq3p/qmpKbzvfe/DOeecg7PPPhvvfe97iwqj161bhyeffBKPP/44tm3bhuuuu87yc//kJz/Bxo0bTYXR69evxwUXXIDvfOc7+M53voPXvva1WLlyZcnvLJ1OY2pqquJ/ExMTWqpWNpvF0aNHcdZZZ2HNmjV45plncPDgQTzyyCO48sorcfToUczNzWnv8/jjj6Onpwfnnnuudpvb7caqVaswPDyMsbExPPnkk/jwhz+MRCKB559/3nSc119/PQKBQFEh/K9+9Svs2bMHS5cu1V7zG9/4Bnbs2IE9e/Zo/+3evRt/+tOf8NRTT+Giiy6qOpDYvXu35bl3zTXXFNXWfOhDH8KHPvQhHDt2DOvWrcO3vvUtnHfeeXj961+PP/zhD7joootwwQUXYPfu3UWv53K5cN5557U8aCUIgjBCCghBEB1Jb28vAGB2drbiY6PRKK699lqcc845+PrXv479+/fjU5/6FAKBALZt2wag9A68kWAwiG984xu4+uqrcfPNNyOdTmuLxv/6r//Cnj17ytaf/OIXv8APf/hDfOxjH8PHPvYx7fZMJoP//u//xiWXXKLtzh86dAgnTpzA6tW
"text/html": [
"\n",
" <div style=\"display: inline-block;\">\n",
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
" Figure\n",
" </div>\n",
" <img src='
" </div>\n",
" "
],
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# BC_Y = pd.concat([AlignMarkY[i]-AlignMarkY[i].mean() for i in AlignMarkY.columns[-3:]],axis=1)\n",
"BC_Y = pd.concat([AlignMarkY[i] for i in AlignMarkY.columns[-2:]],axis=1)\n",
"BC_Y.plot(marker='o')\n",
"plt.title('Die1对位MarkY局部补偿um')"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "a94845fc-49f0-41a1-99a0-b5f5cdff1a69",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 1.0, 'Die1角度°')"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "377aaba53fd14077b700f33ef6be8e5c",
"version_major": 2,
"version_minor": 0
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAImCAYAAACrXu7BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZwcdZ3//6rqe3qOnjshmZyThJCEhIRLNosgKGBcFwREv8oKLrKC+nXXA8X9KbpeC7u4uK6ILIrfxcUDWCLneoKiGI6QQAJkkskdSCaTme6Z6bu6q35/VH+qPlVd1V3dXd3Tk7yfjwcPMt3V1dXdVZ/6vD6v9yEoiqKAIAiCIAiCIAiiAYjTfQAEQRAEQRAEQZw4kAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgCIIgCKJhkAAhCIIgDGSzWVx33XV46aWXat7Xnj17cM011+Do0aMuHJmRaDTq+j7ruV+CIAhChQQIQRAEYeDOO+/E7t27sWDBgpr3NXv2bLz88st48MEHtccURUEmk0Eqlap6v3/6059w8cUXFwmbXC6Hn//857jjjjvw5ptvVrzfI0eO4OKLL8af//znqo+NIAiCKI2gKIoy3QdBEARxovLcc8/hb/7mbwAALS0tWLx4Ma666ipceeWVltsNDQ1V/V4PPPAAHnnkEdx333222zz77LO47rrrkM/nLZ///Oc/j2uvvdbyuYsuugj79u1zfDzvfOc78W//9m+Ot2e88MIL+PjHP45bb70V5513nuG522+/HW1tbTj33HPx7W9/G9/73vcq3v9vf/tbfOELX8D3vvc9rF27tuLXEwRBEKXxTvcBEARBEMC//uu/IhKJYOPGjfj//r//D0eOHMEnPvEJ7fkVK1YYXIRKefHFF/HVr34Vq1evtt1my5Yt+OQnP4nPfe5zeN/73md47hOf+ATi8Tg+9KEP2b7e5/Phpptuwgc/+EEAwH/+53+ir68Pf/3Xfw1AdSc+9rGP4YYbbsApp5wCQRAq/hzRaBSf+cxn8LWvfa1IfADArl27cOedd0IURbS1tVW8fwC44IILcMstt+DTn/40Nm7ciI6Ojqr2QxAEQVhDIVgEQRBNwODgIP7yL/8St99+O97+9rfj+9//PsbGxrTnW1tbsWrVqqr2/dRTT+EjH/kIFi9ebLvNgw8+iGuuuQaXX345rrjiCuRyOe2/Z555Bn/+85/xxS9+EalUColEAul0umgfgiDA5/NBlmV4vV5s374du3fvRiAQQCAQQDgcxqZNm5DL5RAKheDz+Sr+LHfffTfWr1+Pt7/97ZbPn3/++fjSl76Ee++9Fx6Pp+L9M975znfizDPPxD333FP1PgiCIAhryAEhCIJoMq666ir8+te/xjPPPINLL7205v09//zzuOOOO/DKK6/g+eefL3r+qaeewhe/+EWsXbsW9957L+69917L/fDHsmrVKktHRhRFnHPOOchkMlAUBYIg4P7779eeVxQF119/PWRZxjnnnIMf/OAHjj9HNpvFQw89hP/+7/+23eaqq67CypUrEYvFcPXVVzvetxXXXnstrrnmGvzf//t/qxJLBEEQhDUkQAiCIJqMk08+GQCwe/du7bFSOSCvv/46vvnNb2Lr1q3o7e3F1VdfjWuuuUZ7/rOf/SxEUcQrr7xi+X7nn38+HnnkEezYsQNvvPEGHnnkEe25r33ta8jn87jlllu0x37wgx/ghRdeKNqPoijweDx47rnn4Pf78dGPfhQLFy7E5z73OW2bU045BT/84Q9x1llnQZIk518KgL1796K1tRVLliwpud2KFSsq2q8dJ598Mnw+Hw4cOFDSPSIIgiAqg0KwCIIgmgyWczAxMVF222g0imuuuQaRSAT33HMPrr32Wtx222144IEHtG1EsfxQv2TJEsiyDEEQ4PF4tP9EUbR8zCq8KZ1Ow+fzwe/3AwBkWYYkSUgkEtp/7HEAFbsKhw8fRl9fX0WvqZX+/n4cPny4oe9JEARxvEMOCEEQRJNRSXL2j3/8Y4iiiNtvvx0+nw9nnnkmnnvuOfziF78oqqRVjnQ6jTfffNOy8tOjjz5q+PvMM8+0fD2fsJ1KpXDfffcVVd3KZrMVHRfD5/NpIqZRxONxCr8iCIJwGRIgBEEQTcbk5CQAOKq+tHPnToyPj2PlypWGx3t7eyt+31gshjVr1uBnP/uZ9tg//uM/Ip/P45//+Z+1x+68807LPhmJRAK9vb2Ix+OQJAnf+973bMVULpeD11vZLWjBggU4cOAAMpkMAoFARa+thlQqhUOHDrnSD4UgCILQIQFCEATRZOzcuROAWhnLCaeeeir+6Z/+yfBYNRWg9u7di3A4bHAZ8vk8crmc4TGr3I2JiQkkk0n09vbiO9/5Dn7+858jnU4jGAxqIVmAKlJCoRD+93//F93d3RUd35w5czAwMIBHH30UV1xxRcWfr1J+8YtfYHBwEP39/XV/L4IgiBMJEiAEQRBNxs9//nMEAgG89a1vLbvtkiVLsGXLFixevFib6D/xxBN48cUX8aUvfami933llVewe/fuqkKw9u/fD4/Hg97eXtx88824+eab8e///u/YtGkT/uu//gterxe7d+/GlVdeia985SsViw/Gtddei+9+97t4+9vfXtf+HNFoFN/73vfwqU99qm7vQRAEcaJCSegEQRBNwPDwMP70pz/hpptuwhNPPIHPfvaziEQiZV/3wQ9+ENlsFv/wD/+AP//5z3jsscfwla98xVHiOc+2bduwe/dufOc738HQ0JD23xVXXIHLLrvM8NgnP/nJotdv2rQJJ598ssHtuOGGGyBJEj7/+c/j4MGDuPHGG/H+978f73znOys6Np73vOc9mDdvHj772c9WnUtSjkwmg8985jMYHBzEu9/97rq8B0EQxIkMCRCCIIgm4DOf+Qw+9rGP4eDBg/jud7/ruIdFV1cXfvSjH2Fqagp/93d/h1tvvRVXXHEFbrrpJsfvLUkSvv71r2PevHl429veZngunU5DURTtb0VRMD4+XiRwfvnLX+Kss84yPObz+fAf//EfeOaZZ3DJJZdg0aJF+MxnPuP4uKwQBAF33HEHjh49ig9/+MOIx+M17c9MPB7HNddcg2g0in/7t3+rqls7QRAEURpB4e8sBEEQxAnHww8/jC9+8Yv40Y9+hNNPP93w3PXXX49QKIRvf/vbePHFF3H11VdDEATcdNNNWq+R559/HldffTV+8YtfoKOjA0ePHsXOnTvxwgsv4Pe//z0GBgawaNEi/PrXv0ZnZydWr16N2bNno6urC+vWrcNpp51W8THH43H8+Mc/xkc+8pGaOp6byefz+M///E9cffXVCIfDru2XIAiC0CEBQhAEQeDw4cOYPXt22e1effVVzJs3D21tbdpjsVgMTz75JN7//vfjrrvuwk9/+lOsXLkSq1evxkUXXYR
"text/html": [
"\n",
" <div style=\"display: inline-block;\">\n",
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
" Figure\n",
" </div>\n",
" <img src='
" </div>\n",
" "
],
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# BC_A = pd.concat([Angle[i]-Angle[i].mean() for i in Angle.columns[-3:]],axis=1)\n",
"BC_A = pd.concat([Angle[i] for i in Angle.columns[-2:]],axis=1)\n",
"BC_A.plot(marker='o')\n",
"plt.title(f'{DieType}角度(°)')"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "c8f85626-8763-49b3-a9ee-61d8d0fa4f9d",
"metadata": {},
"outputs": [],
"source": [
"# BC_X = BC_X.where(abs(BC_X)<1, np.nan)\n",
"# BC_X.plot(marker='o')\n",
"# plt.title('Die1对位MarkX局部补偿um')"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "ac86dfdd-f506-4ac7-9590-c563900d70df",
"metadata": {},
"outputs": [],
"source": [
"# BC_Y = BC_Y.where(abs(BC_Y)<1, np.nan)\n",
"# BC_Y.plot(marker='o')\n",
"# plt.title('Die1对位MarkY局部补偿um')"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "8baa7aa8-4528-451c-bada-63635cd2989b",
"metadata": {},
"outputs": [],
"source": [
"# BC_X.corr()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "b62b7df1",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>对位MarkX</th>\n",
" <th>对位MarkY</th>\n",
" <th>Angle</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Index</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>31</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>32</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>33</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>34</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>35</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>36</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>37</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>38</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>39</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>40</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>41</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>42</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>43</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>44</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>45</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>46</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>47</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>48</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>49</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>51</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>52</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>53</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>54</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>55</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>56</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>57</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>58</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>59</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>60</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>61</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>62</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>63</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>64</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>65</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>66</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>67</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>68</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>69</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>70</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>71</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>72</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>73</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>74</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>76</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>77</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>78</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>79</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>80</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>81</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>82</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>83</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>84</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>85</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>86</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>87</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 对位MarkX 对位MarkY Angle\n",
"Index \n",
"1 NaN NaN NaN\n",
"2 NaN NaN NaN\n",
"3 NaN NaN NaN\n",
"4 NaN NaN NaN\n",
"5 NaN NaN NaN\n",
"6 NaN NaN NaN\n",
"7 NaN NaN NaN\n",
"8 NaN NaN NaN\n",
"9 NaN NaN NaN\n",
"10 NaN NaN NaN\n",
"11 NaN NaN NaN\n",
"12 NaN NaN NaN\n",
"13 NaN NaN NaN\n",
"14 NaN NaN NaN\n",
"15 NaN NaN NaN\n",
"16 NaN NaN NaN\n",
"17 NaN NaN NaN\n",
"18 NaN NaN NaN\n",
"19 NaN NaN NaN\n",
"20 NaN NaN NaN\n",
"21 NaN NaN NaN\n",
"22 NaN NaN NaN\n",
"23 NaN NaN NaN\n",
"24 NaN NaN NaN\n",
"25 NaN NaN NaN\n",
"26 NaN NaN NaN\n",
"27 NaN NaN NaN\n",
"28 NaN NaN NaN\n",
"29 NaN NaN NaN\n",
"30 NaN NaN NaN\n",
"31 NaN NaN NaN\n",
"32 NaN NaN NaN\n",
"33 NaN NaN NaN\n",
"34 NaN NaN NaN\n",
"35 NaN NaN NaN\n",
"36 NaN NaN NaN\n",
"37 NaN NaN NaN\n",
"38 NaN NaN NaN\n",
"39 NaN NaN NaN\n",
"40 NaN NaN NaN\n",
"41 NaN NaN NaN\n",
"42 NaN NaN NaN\n",
"43 NaN NaN NaN\n",
"44 NaN NaN NaN\n",
"45 NaN NaN NaN\n",
"46 NaN NaN NaN\n",
"47 NaN NaN NaN\n",
"48 NaN NaN NaN\n",
"49 NaN NaN NaN\n",
"50 NaN NaN NaN\n",
"51 NaN NaN NaN\n",
"52 NaN NaN NaN\n",
"53 NaN NaN NaN\n",
"54 NaN NaN NaN\n",
"55 NaN NaN NaN\n",
"56 NaN NaN NaN\n",
"57 NaN NaN NaN\n",
"58 NaN NaN NaN\n",
"59 NaN NaN NaN\n",
"60 NaN NaN NaN\n",
"61 NaN NaN NaN\n",
"62 NaN NaN NaN\n",
"63 NaN NaN NaN\n",
"64 NaN NaN NaN\n",
"65 NaN NaN NaN\n",
"66 NaN NaN NaN\n",
"67 NaN NaN NaN\n",
"68 NaN NaN NaN\n",
"69 NaN NaN NaN\n",
"70 NaN NaN NaN\n",
"71 NaN NaN NaN\n",
"72 NaN NaN NaN\n",
"73 NaN NaN NaN\n",
"74 NaN NaN NaN\n",
"75 NaN NaN NaN\n",
"76 NaN NaN NaN\n",
"77 NaN NaN NaN\n",
"78 NaN NaN NaN\n",
"79 NaN NaN NaN\n",
"80 NaN NaN NaN\n",
"81 NaN NaN NaN\n",
"82 NaN NaN NaN\n",
"83 NaN NaN NaN\n",
"84 NaN NaN NaN\n",
"85 NaN NaN NaN\n",
"86 NaN NaN NaN\n",
"87 NaN NaN NaN"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"DieBC = pd.read_excel('SP-Die补偿模版.xlsx',index_col=0,header=0)\n",
"DieBC"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "f2ae7ed6-c025-4390-8bd1-4e3b82783c36",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>对位MarkX</th>\n",
" <th>对位MarkY</th>\n",
" <th>Angle</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Index</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>-0.176250</td>\n",
" <td>0.020250</td>\n",
" <td>-0.002813</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>-0.050250</td>\n",
" <td>0.064750</td>\n",
" <td>-0.000655</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0.095750</td>\n",
" <td>0.038125</td>\n",
" <td>-0.001255</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0.241750</td>\n",
" <td>0.011500</td>\n",
" <td>-0.001855</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>-0.083250</td>\n",
" <td>0.076250</td>\n",
" <td>-0.001274</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>-0.221500</td>\n",
" <td>-0.109750</td>\n",
" <td>-0.000794</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>-0.017250</td>\n",
" <td>-0.377500</td>\n",
" <td>0.000243</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>0.095250</td>\n",
" <td>-0.090750</td>\n",
" <td>0.000639</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>0.181250</td>\n",
" <td>0.017250</td>\n",
" <td>-0.001388</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>0.254500</td>\n",
" <td>0.035000</td>\n",
" <td>-0.000392</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>0.327750</td>\n",
" <td>0.052750</td>\n",
" <td>0.000603</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>0.124750</td>\n",
" <td>0.060500</td>\n",
" <td>-0.000496</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>0.231000</td>\n",
" <td>-0.062500</td>\n",
" <td>0.000012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>-0.000250</td>\n",
" <td>-0.018750</td>\n",
" <td>-0.001090</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>0.129500</td>\n",
" <td>-0.053500</td>\n",
" <td>-0.000670</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>0.019000</td>\n",
" <td>-0.213250</td>\n",
" <td>-0.000016</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>0.224750</td>\n",
" <td>-0.177500</td>\n",
" <td>-0.002572</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>0.144250</td>\n",
" <td>-0.016750</td>\n",
" <td>-0.000048</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>0.040500</td>\n",
" <td>-0.194250</td>\n",
" <td>0.000040</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>-0.054500</td>\n",
" <td>0.042750</td>\n",
" <td>0.001016</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>-0.094500</td>\n",
" <td>-0.007000</td>\n",
" <td>-0.000203</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>0.062750</td>\n",
" <td>0.132500</td>\n",
" <td>-0.000855</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>0.066750</td>\n",
" <td>0.150250</td>\n",
" <td>-0.000204</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>0.196750</td>\n",
" <td>0.097750</td>\n",
" <td>0.000700</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>0.245500</td>\n",
" <td>-0.326250</td>\n",
" <td>-0.001263</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>0.060250</td>\n",
" <td>-0.330000</td>\n",
" <td>-0.000012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>0.026000</td>\n",
" <td>-0.221750</td>\n",
" <td>-0.001905</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>0.175750</td>\n",
" <td>-0.123000</td>\n",
" <td>0.000769</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>0.147000</td>\n",
" <td>-0.221000</td>\n",
" <td>-0.000364</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>0.183500</td>\n",
" <td>-0.195250</td>\n",
" <td>-0.000303</td>\n",
" </tr>\n",
" <tr>\n",
" <th>31</th>\n",
" <td>0.220000</td>\n",
" <td>-0.169500</td>\n",
" <td>-0.000242</td>\n",
" </tr>\n",
" <tr>\n",
" <th>32</th>\n",
" <td>0.027250</td>\n",
" <td>0.075750</td>\n",
" <td>-0.000563</td>\n",
" </tr>\n",
" <tr>\n",
" <th>33</th>\n",
" <td>0.025250</td>\n",
" <td>0.029250</td>\n",
" <td>-0.000027</td>\n",
" </tr>\n",
" <tr>\n",
" <th>34</th>\n",
" <td>-0.025500</td>\n",
" <td>-0.032000</td>\n",
" <td>0.000352</td>\n",
" </tr>\n",
" <tr>\n",
" <th>35</th>\n",
" <td>0.103000</td>\n",
" <td>-0.126250</td>\n",
" <td>0.000430</td>\n",
" </tr>\n",
" <tr>\n",
" <th>36</th>\n",
" <td>0.065250</td>\n",
" <td>0.048750</td>\n",
" <td>0.001416</td>\n",
" </tr>\n",
" <tr>\n",
" <th>37</th>\n",
" <td>0.056750</td>\n",
" <td>-0.194750</td>\n",
" <td>-0.001784</td>\n",
" </tr>\n",
" <tr>\n",
" <th>38</th>\n",
" <td>0.078500</td>\n",
" <td>-0.040250</td>\n",
" <td>-0.000889</td>\n",
" </tr>\n",
" <tr>\n",
" <th>39</th>\n",
" <td>0.026500</td>\n",
" <td>-0.186250</td>\n",
" <td>0.000466</td>\n",
" </tr>\n",
" <tr>\n",
" <th>40</th>\n",
" <td>0.186750</td>\n",
" <td>-0.168500</td>\n",
" <td>0.000754</td>\n",
" </tr>\n",
" <tr>\n",
" <th>41</th>\n",
" <td>0.156250</td>\n",
" <td>0.204250</td>\n",
" <td>0.002299</td>\n",
" </tr>\n",
" <tr>\n",
" <th>42</th>\n",
" <td>0.135125</td>\n",
" <td>0.146750</td>\n",
" <td>0.001206</td>\n",
" </tr>\n",
" <tr>\n",
" <th>43</th>\n",
" <td>0.114000</td>\n",
" <td>0.089250</td>\n",
" <td>0.000114</td>\n",
" </tr>\n",
" <tr>\n",
" <th>44</th>\n",
" <td>0.135000</td>\n",
" <td>-0.145000</td>\n",
" <td>0.001351</td>\n",
" </tr>\n",
" <tr>\n",
" <th>45</th>\n",
" <td>0.060500</td>\n",
" <td>-0.166000</td>\n",
" <td>0.001076</td>\n",
" </tr>\n",
" <tr>\n",
" <th>46</th>\n",
" <td>0.219500</td>\n",
" <td>-0.098000</td>\n",
" <td>0.001441</td>\n",
" </tr>\n",
" <tr>\n",
" <th>47</th>\n",
" <td>-0.140250</td>\n",
" <td>-0.373750</td>\n",
" <td>0.000735</td>\n",
" </tr>\n",
" <tr>\n",
" <th>48</th>\n",
" <td>0.114500</td>\n",
" <td>-0.342000</td>\n",
" <td>-0.000636</td>\n",
" </tr>\n",
" <tr>\n",
" <th>49</th>\n",
" <td>0.101750</td>\n",
" <td>-0.103750</td>\n",
" <td>0.002060</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50</th>\n",
" <td>0.107875</td>\n",
" <td>-0.036000</td>\n",
" <td>0.001074</td>\n",
" </tr>\n",
" <tr>\n",
" <th>51</th>\n",
" <td>0.114000</td>\n",
" <td>0.031750</td>\n",
" <td>0.000088</td>\n",
" </tr>\n",
" <tr>\n",
" <th>52</th>\n",
" <td>0.338750</td>\n",
" <td>0.304250</td>\n",
" <td>0.000048</td>\n",
" </tr>\n",
" <tr>\n",
" <th>53</th>\n",
" <td>0.000750</td>\n",
" <td>-0.020500</td>\n",
" <td>0.000696</td>\n",
" </tr>\n",
" <tr>\n",
" <th>54</th>\n",
" <td>0.022625</td>\n",
" <td>0.020625</td>\n",
" <td>0.000900</td>\n",
" </tr>\n",
" <tr>\n",
" <th>55</th>\n",
" <td>0.044500</td>\n",
" <td>0.061750</td>\n",
" <td>0.001104</td>\n",
" </tr>\n",
" <tr>\n",
" <th>56</th>\n",
" <td>0.172500</td>\n",
" <td>-0.016500</td>\n",
" <td>-0.000131</td>\n",
" </tr>\n",
" <tr>\n",
" <th>57</th>\n",
" <td>0.048250</td>\n",
" <td>-0.181000</td>\n",
" <td>0.001105</td>\n",
" </tr>\n",
" <tr>\n",
" <th>58</th>\n",
" <td>0.416750</td>\n",
" <td>-0.373750</td>\n",
" <td>-0.001586</td>\n",
" </tr>\n",
" <tr>\n",
" <th>59</th>\n",
" <td>-0.198000</td>\n",
" <td>-0.267000</td>\n",
" <td>0.000579</td>\n",
" </tr>\n",
" <tr>\n",
" <th>60</th>\n",
" <td>-0.078000</td>\n",
" <td>-0.183833</td>\n",
" <td>0.000241</td>\n",
" </tr>\n",
" <tr>\n",
" <th>61</th>\n",
" <td>0.042000</td>\n",
" <td>-0.100667</td>\n",
" <td>-0.000097</td>\n",
" </tr>\n",
" <tr>\n",
" <th>62</th>\n",
" <td>0.162000</td>\n",
" <td>-0.017500</td>\n",
" <td>-0.000435</td>\n",
" </tr>\n",
" <tr>\n",
" <th>63</th>\n",
" <td>-0.054250</td>\n",
" <td>0.026500</td>\n",
" <td>0.000970</td>\n",
" </tr>\n",
" <tr>\n",
" <th>64</th>\n",
" <td>-0.075250</td>\n",
" <td>-0.011000</td>\n",
" <td>-0.001122</td>\n",
" </tr>\n",
" <tr>\n",
" <th>65</th>\n",
" <td>-0.066500</td>\n",
" <td>0.042750</td>\n",
" <td>0.000656</td>\n",
" </tr>\n",
" <tr>\n",
" <th>66</th>\n",
" <td>0.151500</td>\n",
" <td>-0.041250</td>\n",
" <td>0.001182</td>\n",
" </tr>\n",
" <tr>\n",
" <th>67</th>\n",
" <td>0.144750</td>\n",
" <td>-0.099250</td>\n",
" <td>0.001174</td>\n",
" </tr>\n",
" <tr>\n",
" <th>68</th>\n",
" <td>0.138000</td>\n",
" <td>-0.157250</td>\n",
" <td>0.001167</td>\n",
" </tr>\n",
" <tr>\n",
" <th>69</th>\n",
" <td>0.277250</td>\n",
" <td>-0.138750</td>\n",
" <td>0.001707</td>\n",
" </tr>\n",
" <tr>\n",
" <th>70</th>\n",
" <td>0.203500</td>\n",
" <td>0.130500</td>\n",
" <td>0.003755</td>\n",
" </tr>\n",
" <tr>\n",
" <th>71</th>\n",
" <td>0.141250</td>\n",
" <td>0.126500</td>\n",
" <td>0.001785</td>\n",
" </tr>\n",
" <tr>\n",
" <th>72</th>\n",
" <td>0.171500</td>\n",
" <td>0.063000</td>\n",
" <td>0.002567</td>\n",
" </tr>\n",
" <tr>\n",
" <th>73</th>\n",
" <td>0.099000</td>\n",
" <td>0.109500</td>\n",
" <td>0.001905</td>\n",
" </tr>\n",
" <tr>\n",
" <th>74</th>\n",
" <td>0.179750</td>\n",
" <td>0.101500</td>\n",
" <td>0.001261</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75</th>\n",
" <td>0.080000</td>\n",
" <td>0.081000</td>\n",
" <td>0.000765</td>\n",
" </tr>\n",
" <tr>\n",
" <th>76</th>\n",
" <td>0.175500</td>\n",
" <td>-0.099500</td>\n",
" <td>0.000115</td>\n",
" </tr>\n",
" <tr>\n",
" <th>77</th>\n",
" <td>0.288250</td>\n",
" <td>0.158250</td>\n",
" <td>0.002115</td>\n",
" </tr>\n",
" <tr>\n",
" <th>78</th>\n",
" <td>-0.298750</td>\n",
" <td>0.405500</td>\n",
" <td>0.000791</td>\n",
" </tr>\n",
" <tr>\n",
" <th>79</th>\n",
" <td>0.271250</td>\n",
" <td>0.085750</td>\n",
" <td>0.000585</td>\n",
" </tr>\n",
" <tr>\n",
" <th>80</th>\n",
" <td>-0.018750</td>\n",
" <td>0.100250</td>\n",
" <td>0.001441</td>\n",
" </tr>\n",
" <tr>\n",
" <th>81</th>\n",
" <td>0.132000</td>\n",
" <td>0.011750</td>\n",
" <td>-0.000029</td>\n",
" </tr>\n",
" <tr>\n",
" <th>82</th>\n",
" <td>0.107000</td>\n",
" <td>-0.088500</td>\n",
" <td>0.001590</td>\n",
" </tr>\n",
" <tr>\n",
" <th>83</th>\n",
" <td>0.079250</td>\n",
" <td>0.089750</td>\n",
" <td>0.000967</td>\n",
" </tr>\n",
" <tr>\n",
" <th>84</th>\n",
" <td>0.079250</td>\n",
" <td>0.089750</td>\n",
" <td>0.000967</td>\n",
" </tr>\n",
" <tr>\n",
" <th>85</th>\n",
" <td>0.079250</td>\n",
" <td>0.089750</td>\n",
" <td>0.000967</td>\n",
" </tr>\n",
" <tr>\n",
" <th>86</th>\n",
" <td>0.079250</td>\n",
" <td>0.089750</td>\n",
" <td>0.000967</td>\n",
" </tr>\n",
" <tr>\n",
" <th>87</th>\n",
" <td>0.079250</td>\n",
" <td>0.089750</td>\n",
" <td>0.000967</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 对位MarkX 对位MarkY Angle\n",
"Index \n",
"1 -0.176250 0.020250 -0.002813\n",
"2 -0.050250 0.064750 -0.000655\n",
"3 0.095750 0.038125 -0.001255\n",
"4 0.241750 0.011500 -0.001855\n",
"5 -0.083250 0.076250 -0.001274\n",
"6 -0.221500 -0.109750 -0.000794\n",
"7 -0.017250 -0.377500 0.000243\n",
"8 0.095250 -0.090750 0.000639\n",
"9 0.181250 0.017250 -0.001388\n",
"10 0.254500 0.035000 -0.000392\n",
"11 0.327750 0.052750 0.000603\n",
"12 0.124750 0.060500 -0.000496\n",
"13 0.231000 -0.062500 0.000012\n",
"14 -0.000250 -0.018750 -0.001090\n",
"15 0.129500 -0.053500 -0.000670\n",
"16 0.019000 -0.213250 -0.000016\n",
"17 0.224750 -0.177500 -0.002572\n",
"18 0.144250 -0.016750 -0.000048\n",
"19 0.040500 -0.194250 0.000040\n",
"20 -0.054500 0.042750 0.001016\n",
"21 -0.094500 -0.007000 -0.000203\n",
"22 0.062750 0.132500 -0.000855\n",
"23 0.066750 0.150250 -0.000204\n",
"24 0.196750 0.097750 0.000700\n",
"25 0.245500 -0.326250 -0.001263\n",
"26 0.060250 -0.330000 -0.000012\n",
"27 0.026000 -0.221750 -0.001905\n",
"28 0.175750 -0.123000 0.000769\n",
"29 0.147000 -0.221000 -0.000364\n",
"30 0.183500 -0.195250 -0.000303\n",
"31 0.220000 -0.169500 -0.000242\n",
"32 0.027250 0.075750 -0.000563\n",
"33 0.025250 0.029250 -0.000027\n",
"34 -0.025500 -0.032000 0.000352\n",
"35 0.103000 -0.126250 0.000430\n",
"36 0.065250 0.048750 0.001416\n",
"37 0.056750 -0.194750 -0.001784\n",
"38 0.078500 -0.040250 -0.000889\n",
"39 0.026500 -0.186250 0.000466\n",
"40 0.186750 -0.168500 0.000754\n",
"41 0.156250 0.204250 0.002299\n",
"42 0.135125 0.146750 0.001206\n",
"43 0.114000 0.089250 0.000114\n",
"44 0.135000 -0.145000 0.001351\n",
"45 0.060500 -0.166000 0.001076\n",
"46 0.219500 -0.098000 0.001441\n",
"47 -0.140250 -0.373750 0.000735\n",
"48 0.114500 -0.342000 -0.000636\n",
"49 0.101750 -0.103750 0.002060\n",
"50 0.107875 -0.036000 0.001074\n",
"51 0.114000 0.031750 0.000088\n",
"52 0.338750 0.304250 0.000048\n",
"53 0.000750 -0.020500 0.000696\n",
"54 0.022625 0.020625 0.000900\n",
"55 0.044500 0.061750 0.001104\n",
"56 0.172500 -0.016500 -0.000131\n",
"57 0.048250 -0.181000 0.001105\n",
"58 0.416750 -0.373750 -0.001586\n",
"59 -0.198000 -0.267000 0.000579\n",
"60 -0.078000 -0.183833 0.000241\n",
"61 0.042000 -0.100667 -0.000097\n",
"62 0.162000 -0.017500 -0.000435\n",
"63 -0.054250 0.026500 0.000970\n",
"64 -0.075250 -0.011000 -0.001122\n",
"65 -0.066500 0.042750 0.000656\n",
"66 0.151500 -0.041250 0.001182\n",
"67 0.144750 -0.099250 0.001174\n",
"68 0.138000 -0.157250 0.001167\n",
"69 0.277250 -0.138750 0.001707\n",
"70 0.203500 0.130500 0.003755\n",
"71 0.141250 0.126500 0.001785\n",
"72 0.171500 0.063000 0.002567\n",
"73 0.099000 0.109500 0.001905\n",
"74 0.179750 0.101500 0.001261\n",
"75 0.080000 0.081000 0.000765\n",
"76 0.175500 -0.099500 0.000115\n",
"77 0.288250 0.158250 0.002115\n",
"78 -0.298750 0.405500 0.000791\n",
"79 0.271250 0.085750 0.000585\n",
"80 -0.018750 0.100250 0.001441\n",
"81 0.132000 0.011750 -0.000029\n",
"82 0.107000 -0.088500 0.001590\n",
"83 0.079250 0.089750 0.000967\n",
"84 0.079250 0.089750 0.000967\n",
"85 0.079250 0.089750 0.000967\n",
"86 0.079250 0.089750 0.000967\n",
"87 0.079250 0.089750 0.000967"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"BC_X = BC_X.mean(axis=1)\n",
"DieBC['对位MarkX'] = BC_X.fillna(BC_X.interpolate()).values\n",
"BC_Y = BC_Y.mean(axis=1)\n",
"DieBC['对位MarkY'] = BC_Y.fillna(BC_Y.interpolate()).values\n",
"BC_A = BC_A.mean(axis=1)\n",
"DieBC['Angle'] = BC_A.fillna(BC_A.interpolate()).values\n",
"DieBC"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "2dddf61b-818e-4592-8b46-765bfa119856",
"metadata": {},
"outputs": [],
"source": [
"import datetime\n",
"daytime = str(datetime.datetime.now())[:10]\n",
"print(daytime)\n",
"# DieBC.to_excel(f'{DieType}/{DieType}局部补偿{daytime}.xlsx')"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "7c602ca9-f73a-4584-a051-bd1e84f86d5e",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>1</th>\n",
" <th>2</th>\n",
" <th>3</th>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>全局补偿X</th>\n",
" <td>5.589459</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>全局补偿Y</th>\n",
" <td>5.057021</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>全局补偿角度</th>\n",
" <td>0.02032</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Index</th>\n",
" <td>对位MarkX</td>\n",
" <td>对位MarkY</td>\n",
" <td>Angle</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0.29802</td>\n",
" <td>0.31845</td>\n",
" <td>0.001817</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0.04352</td>\n",
" <td>0.263284</td>\n",
" <td>0.000099</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0.087187</td>\n",
" <td>0.223534</td>\n",
" <td>0.000617</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0.130854</td>\n",
" <td>0.183784</td>\n",
" <td>0.001135</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>-0.122146</td>\n",
" <td>0.217117</td>\n",
" <td>-0.000801</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>0.149854</td>\n",
" <td>0.221284</td>\n",
" <td>0.000566</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>-0.278646</td>\n",
" <td>-0.309216</td>\n",
" <td>0.002059</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>-0.16648</td>\n",
" <td>-0.014716</td>\n",
" <td>-0.000401</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>-0.044313</td>\n",
" <td>0.072617</td>\n",
" <td>0.000706</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>-0.00773</td>\n",
" <td>0.0212</td>\n",
" <td>0.000567</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>0.028854</td>\n",
" <td>-0.030216</td>\n",
" <td>0.000427</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>-0.056646</td>\n",
" <td>-0.03305</td>\n",
" <td>0.000507</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>0.103187</td>\n",
" <td>0.064784</td>\n",
" <td>-0.000909</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>0.147187</td>\n",
" <td>0.336784</td>\n",
" <td>-0.000679</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>0.05152</td>\n",
" <td>-0.00255</td>\n",
" <td>0.000032</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>-0.164646</td>\n",
" <td>0.18295</td>\n",
" <td>-0.000627</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>-0.172313</td>\n",
" <td>-0.137216</td>\n",
" <td>0.001899</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>-0.075313</td>\n",
" <td>-0.255716</td>\n",
" <td>0.002427</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>-0.18048</td>\n",
" <td>0.14945</td>\n",
" <td>0.001025</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>-0.17848</td>\n",
" <td>-0.189883</td>\n",
" <td>0.000494</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>-0.097146</td>\n",
" <td>-0.15105</td>\n",
" <td>-0.000001</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>-0.023146</td>\n",
" <td>-0.052883</td>\n",
" <td>0.000556</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>0.017187</td>\n",
" <td>0.150617</td>\n",
" <td>-0.000582</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>0.32351</td>\n",
" <td>0.284186</td>\n",
" <td>-0.002588</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>-0.07248</td>\n",
" <td>-0.071216</td>\n",
" <td>0.00207</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>-0.100813</td>\n",
" <td>-0.09355</td>\n",
" <td>-0.000304</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>-0.08448</td>\n",
" <td>-0.156383</td>\n",
" <td>0.00119</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>-0.191813</td>\n",
" <td>-0.245216</td>\n",
" <td>0.002553</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>-0.24648</td>\n",
" <td>-0.300216</td>\n",
" <td>0.00291</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>-0.186146</td>\n",
" <td>-0.325383</td>\n",
" <td>0.001983</td>\n",
" </tr>\n",
" <tr>\n",
" <th>31</th>\n",
" <td>-0.125813</td>\n",
" <td>-0.35055</td>\n",
" <td>0.001057</td>\n",
" </tr>\n",
" <tr>\n",
" <th>32</th>\n",
" <td>-0.17648</td>\n",
" <td>-0.10005</td>\n",
" <td>0.001247</td>\n",
" </tr>\n",
" <tr>\n",
" <th>33</th>\n",
" <td>0.04802</td>\n",
" <td>0.061784</td>\n",
" <td>-0.001063</td>\n",
" </tr>\n",
" <tr>\n",
" <th>34</th>\n",
" <td>0.176187</td>\n",
" <td>0.46945</td>\n",
" <td>-0.001825</td>\n",
" </tr>\n",
" <tr>\n",
" <th>35</th>\n",
" <td>0.10652</td>\n",
" <td>-0.357883</td>\n",
" <td>0.001487</td>\n",
" </tr>\n",
" <tr>\n",
" <th>36</th>\n",
" <td>-0.045646</td>\n",
" <td>0.475617</td>\n",
" <td>-0.002123</td>\n",
" </tr>\n",
" <tr>\n",
" <th>37</th>\n",
" <td>-0.101646</td>\n",
" <td>-0.309216</td>\n",
" <td>0.001077</td>\n",
" </tr>\n",
" <tr>\n",
" <th>38</th>\n",
" <td>-0.084313</td>\n",
" <td>-0.13755</td>\n",
" <td>0.000914</td>\n",
" </tr>\n",
" <tr>\n",
" <th>39</th>\n",
" <td>-0.053146</td>\n",
" <td>-0.078883</td>\n",
" <td>0.003345</td>\n",
" </tr>\n",
" <tr>\n",
" <th>40</th>\n",
" <td>-0.04448</td>\n",
" <td>-0.42605</td>\n",
" <td>0.001397</td>\n",
" </tr>\n",
" <tr>\n",
" <th>41</th>\n",
" <td>0.01552</td>\n",
" <td>-0.056716</td>\n",
" <td>-0.000278</td>\n",
" </tr>\n",
" <tr>\n",
" <th>42</th>\n",
" <td>-0.004396</td>\n",
" <td>-0.0678</td>\n",
" <td>0.000554</td>\n",
" </tr>\n",
" <tr>\n",
" <th>43</th>\n",
" <td>-0.024313</td>\n",
" <td>-0.078883</td>\n",
" <td>0.001386</td>\n",
" </tr>\n",
" <tr>\n",
" <th>44</th>\n",
" <td>0.017354</td>\n",
" <td>-0.01505</td>\n",
" <td>-0.001466</td>\n",
" </tr>\n",
" <tr>\n",
" <th>45</th>\n",
" <td>0.16802</td>\n",
" <td>0.352117</td>\n",
" <td>-0.001565</td>\n",
" </tr>\n",
" <tr>\n",
" <th>46</th>\n",
" <td>0.171187</td>\n",
" <td>0.08045</td>\n",
" <td>-0.002168</td>\n",
" </tr>\n",
" <tr>\n",
" <th>47</th>\n",
" <td>-0.09698</td>\n",
" <td>0.03745</td>\n",
" <td>-0.001379</td>\n",
" </tr>\n",
" <tr>\n",
" <th>48</th>\n",
" <td>0.021187</td>\n",
" <td>-0.09805</td>\n",
" <td>-0.000235</td>\n",
" </tr>\n",
" <tr>\n",
" <th>49</th>\n",
" <td>-0.133313</td>\n",
" <td>-0.212216</td>\n",
" <td>0.000334</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50</th>\n",
" <td>-0.036146</td>\n",
" <td>-0.2518</td>\n",
" <td>0.000955</td>\n",
" </tr>\n",
" <tr>\n",
" <th>51</th>\n",
" <td>0.06102</td>\n",
" <td>-0.291383</td>\n",
" <td>0.001576</td>\n",
" </tr>\n",
" <tr>\n",
" <th>52</th>\n",
" <td>0.215854</td>\n",
" <td>0.18295</td>\n",
" <td>0.000214</td>\n",
" </tr>\n",
" <tr>\n",
" <th>53</th>\n",
" <td>-0.11098</td>\n",
" <td>-0.073883</td>\n",
" <td>0.001053</td>\n",
" </tr>\n",
" <tr>\n",
" <th>54</th>\n",
" <td>0.00027</td>\n",
" <td>-0.04005</td>\n",
" <td>0.000003</td>\n",
" </tr>\n",
" <tr>\n",
" <th>55</th>\n",
" <td>0.11152</td>\n",
" <td>-0.006216</td>\n",
" <td>-0.001048</td>\n",
" </tr>\n",
" <tr>\n",
" <th>56</th>\n",
" <td>0.19302</td>\n",
" <td>0.21295</td>\n",
" <td>-0.00216</td>\n",
" </tr>\n",
" <tr>\n",
" <th>57</th>\n",
" <td>0.273187</td>\n",
" <td>-0.013883</td>\n",
" <td>-0.002739</td>\n",
" </tr>\n",
" <tr>\n",
" <th>58</th>\n",
" <td>-0.028146</td>\n",
" <td>-0.246383</td>\n",
" <td>0.001968</td>\n",
" </tr>\n",
" <tr>\n",
" <th>59</th>\n",
" <td>-0.209813</td>\n",
" <td>0.088284</td>\n",
" <td>-0.002877</td>\n",
" </tr>\n",
" <tr>\n",
" <th>60</th>\n",
" <td>-0.174757</td>\n",
" <td>-0.023383</td>\n",
" <td>-0.001219</td>\n",
" </tr>\n",
" <tr>\n",
" <th>61</th>\n",
" <td>-0.139702</td>\n",
" <td>-0.13505</td>\n",
" <td>0.00044</td>\n",
" </tr>\n",
" <tr>\n",
" <th>62</th>\n",
" <td>-0.104646</td>\n",
" <td>-0.246716</td>\n",
" <td>0.002098</td>\n",
" </tr>\n",
" <tr>\n",
" <th>63</th>\n",
" <td>-0.205646</td>\n",
" <td>-0.28555</td>\n",
" <td>0.001062</td>\n",
" </tr>\n",
" <tr>\n",
" <th>64</th>\n",
" <td>-0.12598</td>\n",
" <td>-0.15505</td>\n",
" <td>0.002259</td>\n",
" </tr>\n",
" <tr>\n",
" <th>65</th>\n",
" <td>-0.14348</td>\n",
" <td>-0.03305</td>\n",
" <td>0.001479</td>\n",
" </tr>\n",
" <tr>\n",
" <th>66</th>\n",
" <td>0.171354</td>\n",
" <td>-0.021883</td>\n",
" <td>-0.0015</td>\n",
" </tr>\n",
" <tr>\n",
" <th>67</th>\n",
" <td>0.115437</td>\n",
" <td>0.048284</td>\n",
" <td>-0.001291</td>\n",
" </tr>\n",
" <tr>\n",
" <th>68</th>\n",
" <td>0.05952</td>\n",
" <td>0.11845</td>\n",
" <td>-0.001083</td>\n",
" </tr>\n",
" <tr>\n",
" <th>69</th>\n",
" <td>-0.092146</td>\n",
" <td>-0.126216</td>\n",
" <td>-0.000788</td>\n",
" </tr>\n",
" <tr>\n",
" <th>70</th>\n",
" <td>-0.085313</td>\n",
" <td>-0.106383</td>\n",
" <td>-0.000915</td>\n",
" </tr>\n",
" <tr>\n",
" <th>71</th>\n",
" <td>0.079354</td>\n",
" <td>-0.09755</td>\n",
" <td>-0.000379</td>\n",
" </tr>\n",
" <tr>\n",
" <th>72</th>\n",
" <td>0.071354</td>\n",
" <td>-0.119383</td>\n",
" <td>-0.000533</td>\n",
" </tr>\n",
" <tr>\n",
" <th>73</th>\n",
" <td>0.063854</td>\n",
" <td>0.086617</td>\n",
" <td>-0.000797</td>\n",
" </tr>\n",
" <tr>\n",
" <th>74</th>\n",
" <td>0.01302</td>\n",
" <td>0.07795</td>\n",
" <td>0.001178</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75</th>\n",
" <td>0.046187</td>\n",
" <td>0.084284</td>\n",
" <td>-0.001103</td>\n",
" </tr>\n",
" <tr>\n",
" <th>76</th>\n",
" <td>0.185854</td>\n",
" <td>0.09695</td>\n",
" <td>-0.002941</td>\n",
" </tr>\n",
" <tr>\n",
" <th>77</th>\n",
" <td>0.31002</td>\n",
" <td>0.278117</td>\n",
" <td>-0.003508</td>\n",
" </tr>\n",
" <tr>\n",
" <th>78</th>\n",
" <td>-0.099146</td>\n",
" <td>0.313617</td>\n",
" <td>-0.002889</td>\n",
" </tr>\n",
" <tr>\n",
" <th>79</th>\n",
" <td>0.081354</td>\n",
" <td>0.06045</td>\n",
" <td>-0.000383</td>\n",
" </tr>\n",
" <tr>\n",
" <th>80</th>\n",
" <td>-0.037646</td>\n",
" <td>0.06795</td>\n",
" <td>-0.000992</td>\n",
" </tr>\n",
" <tr>\n",
" <th>81</th>\n",
" <td>0.177187</td>\n",
" <td>0.105117</td>\n",
" <td>0.000628</td>\n",
" </tr>\n",
" <tr>\n",
" <th>82</th>\n",
" <td>0.089854</td>\n",
" <td>0.135117</td>\n",
" <td>-0.00161</td>\n",
" </tr>\n",
" <tr>\n",
" <th>83</th>\n",
" <td>0.27152</td>\n",
" <td>0.35145</td>\n",
" <td>-0.001859</td>\n",
" </tr>\n",
" <tr>\n",
" <th>84</th>\n",
" <td>0.27152</td>\n",
" <td>0.35145</td>\n",
" <td>-0.001859</td>\n",
" </tr>\n",
" <tr>\n",
" <th>85</th>\n",
" <td>0.27152</td>\n",
" <td>0.35145</td>\n",
" <td>-0.001859</td>\n",
" </tr>\n",
" <tr>\n",
" <th>86</th>\n",
" <td>0.27152</td>\n",
" <td>0.35145</td>\n",
" <td>-0.001859</td>\n",
" </tr>\n",
" <tr>\n",
" <th>87</th>\n",
" <td>0.27152</td>\n",
" <td>0.35145</td>\n",
" <td>-0.001859</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 1 2 3\n",
"0 \n",
"全局补偿X 5.589459 NaN NaN\n",
"全局补偿Y 5.057021 NaN NaN\n",
"全局补偿角度 0.02032 NaN NaN\n",
"Index 对位MarkX 对位MarkY Angle\n",
"1 0.29802 0.31845 0.001817\n",
"2 0.04352 0.263284 0.000099\n",
"3 0.087187 0.223534 0.000617\n",
"4 0.130854 0.183784 0.001135\n",
"5 -0.122146 0.217117 -0.000801\n",
"6 0.149854 0.221284 0.000566\n",
"7 -0.278646 -0.309216 0.002059\n",
"8 -0.16648 -0.014716 -0.000401\n",
"9 -0.044313 0.072617 0.000706\n",
"10 -0.00773 0.0212 0.000567\n",
"11 0.028854 -0.030216 0.000427\n",
"12 -0.056646 -0.03305 0.000507\n",
"13 0.103187 0.064784 -0.000909\n",
"14 0.147187 0.336784 -0.000679\n",
"15 0.05152 -0.00255 0.000032\n",
"16 -0.164646 0.18295 -0.000627\n",
"17 -0.172313 -0.137216 0.001899\n",
"18 -0.075313 -0.255716 0.002427\n",
"19 -0.18048 0.14945 0.001025\n",
"20 -0.17848 -0.189883 0.000494\n",
"21 -0.097146 -0.15105 -0.000001\n",
"22 -0.023146 -0.052883 0.000556\n",
"23 0.017187 0.150617 -0.000582\n",
"24 0.32351 0.284186 -0.002588\n",
"25 -0.07248 -0.071216 0.00207\n",
"26 -0.100813 -0.09355 -0.000304\n",
"27 -0.08448 -0.156383 0.00119\n",
"28 -0.191813 -0.245216 0.002553\n",
"29 -0.24648 -0.300216 0.00291\n",
"30 -0.186146 -0.325383 0.001983\n",
"31 -0.125813 -0.35055 0.001057\n",
"32 -0.17648 -0.10005 0.001247\n",
"33 0.04802 0.061784 -0.001063\n",
"34 0.176187 0.46945 -0.001825\n",
"35 0.10652 -0.357883 0.001487\n",
"36 -0.045646 0.475617 -0.002123\n",
"37 -0.101646 -0.309216 0.001077\n",
"38 -0.084313 -0.13755 0.000914\n",
"39 -0.053146 -0.078883 0.003345\n",
"40 -0.04448 -0.42605 0.001397\n",
"41 0.01552 -0.056716 -0.000278\n",
"42 -0.004396 -0.0678 0.000554\n",
"43 -0.024313 -0.078883 0.001386\n",
"44 0.017354 -0.01505 -0.001466\n",
"45 0.16802 0.352117 -0.001565\n",
"46 0.171187 0.08045 -0.002168\n",
"47 -0.09698 0.03745 -0.001379\n",
"48 0.021187 -0.09805 -0.000235\n",
"49 -0.133313 -0.212216 0.000334\n",
"50 -0.036146 -0.2518 0.000955\n",
"51 0.06102 -0.291383 0.001576\n",
"52 0.215854 0.18295 0.000214\n",
"53 -0.11098 -0.073883 0.001053\n",
"54 0.00027 -0.04005 0.000003\n",
"55 0.11152 -0.006216 -0.001048\n",
"56 0.19302 0.21295 -0.00216\n",
"57 0.273187 -0.013883 -0.002739\n",
"58 -0.028146 -0.246383 0.001968\n",
"59 -0.209813 0.088284 -0.002877\n",
"60 -0.174757 -0.023383 -0.001219\n",
"61 -0.139702 -0.13505 0.00044\n",
"62 -0.104646 -0.246716 0.002098\n",
"63 -0.205646 -0.28555 0.001062\n",
"64 -0.12598 -0.15505 0.002259\n",
"65 -0.14348 -0.03305 0.001479\n",
"66 0.171354 -0.021883 -0.0015\n",
"67 0.115437 0.048284 -0.001291\n",
"68 0.05952 0.11845 -0.001083\n",
"69 -0.092146 -0.126216 -0.000788\n",
"70 -0.085313 -0.106383 -0.000915\n",
"71 0.079354 -0.09755 -0.000379\n",
"72 0.071354 -0.119383 -0.000533\n",
"73 0.063854 0.086617 -0.000797\n",
"74 0.01302 0.07795 0.001178\n",
"75 0.046187 0.084284 -0.001103\n",
"76 0.185854 0.09695 -0.002941\n",
"77 0.31002 0.278117 -0.003508\n",
"78 -0.099146 0.313617 -0.002889\n",
"79 0.081354 0.06045 -0.000383\n",
"80 -0.037646 0.06795 -0.000992\n",
"81 0.177187 0.105117 0.000628\n",
"82 0.089854 0.135117 -0.00161\n",
"83 0.27152 0.35145 -0.001859\n",
"84 0.27152 0.35145 -0.001859\n",
"85 0.27152 0.35145 -0.001859\n",
"86 0.27152 0.35145 -0.001859\n",
"87 0.27152 0.35145 -0.001859"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"OldDieBCFileName = f'{DieType}局部补偿2025-0107.xlsx'\n",
"OldDieBC = pd.read_excel(f'{DieType}/{OldDieBCFileName}',index_col=0,header=None)\n",
"OldDieBC"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "b7bb39f8-9366-4698-9a4d-98a03f916ab7",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>1</th>\n",
" <th>2</th>\n",
" <th>3</th>\n",
" <th>对位MarkX</th>\n",
" <th>对位MarkY</th>\n",
" <th>Angle</th>\n",
" <th>Calc-X</th>\n",
" <th>Calc-Y</th>\n",
" <th>Calc-Angle</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0.29802</td>\n",
" <td>0.31845</td>\n",
" <td>0.001817</td>\n",
" <td>-0.176250</td>\n",
" <td>0.020250</td>\n",
" <td>-0.002813</td>\n",
" <td>0.47427</td>\n",
" <td>0.2982</td>\n",
" <td>-0.000996</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0.04352</td>\n",
" <td>0.263284</td>\n",
" <td>0.000099</td>\n",
" <td>-0.050250</td>\n",
" <td>0.064750</td>\n",
" <td>-0.000655</td>\n",
" <td>0.09377</td>\n",
" <td>0.198534</td>\n",
" <td>-0.000556</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0.087187</td>\n",
" <td>0.223534</td>\n",
" <td>0.000617</td>\n",
" <td>0.095750</td>\n",
" <td>0.038125</td>\n",
" <td>-0.001255</td>\n",
" <td>-0.008563</td>\n",
" <td>0.185409</td>\n",
" <td>-0.000638</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0.130854</td>\n",
" <td>0.183784</td>\n",
" <td>0.001135</td>\n",
" <td>0.241750</td>\n",
" <td>0.011500</td>\n",
" <td>-0.001855</td>\n",
" <td>-0.110896</td>\n",
" <td>0.172284</td>\n",
" <td>-0.00072</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>-0.122146</td>\n",
" <td>0.217117</td>\n",
" <td>-0.000801</td>\n",
" <td>-0.083250</td>\n",
" <td>0.076250</td>\n",
" <td>-0.001274</td>\n",
" <td>-0.038896</td>\n",
" <td>0.140867</td>\n",
" <td>-0.002075</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>0.149854</td>\n",
" <td>0.221284</td>\n",
" <td>0.000566</td>\n",
" <td>-0.221500</td>\n",
" <td>-0.109750</td>\n",
" <td>-0.000794</td>\n",
" <td>0.371354</td>\n",
" <td>0.331034</td>\n",
" <td>-0.000228</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>-0.278646</td>\n",
" <td>-0.309216</td>\n",
" <td>0.002059</td>\n",
" <td>-0.017250</td>\n",
" <td>-0.377500</td>\n",
" <td>0.000243</td>\n",
" <td>-0.261396</td>\n",
" <td>0.068284</td>\n",
" <td>0.002302</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>-0.16648</td>\n",
" <td>-0.014716</td>\n",
" <td>-0.000401</td>\n",
" <td>0.095250</td>\n",
" <td>-0.090750</td>\n",
" <td>0.000639</td>\n",
" <td>-0.26173</td>\n",
" <td>0.076034</td>\n",
" <td>0.000238</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>-0.044313</td>\n",
" <td>0.072617</td>\n",
" <td>0.000706</td>\n",
" <td>0.181250</td>\n",
" <td>0.017250</td>\n",
" <td>-0.001388</td>\n",
" <td>-0.225563</td>\n",
" <td>0.055367</td>\n",
" <td>-0.000682</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>-0.00773</td>\n",
" <td>0.0212</td>\n",
" <td>0.000567</td>\n",
" <td>0.254500</td>\n",
" <td>0.035000</td>\n",
" <td>-0.000392</td>\n",
" <td>-0.26223</td>\n",
" <td>-0.0138</td>\n",
" <td>0.000175</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>0.028854</td>\n",
" <td>-0.030216</td>\n",
" <td>0.000427</td>\n",
" <td>0.327750</td>\n",
" <td>0.052750</td>\n",
" <td>0.000603</td>\n",
" <td>-0.298896</td>\n",
" <td>-0.082966</td>\n",
" <td>0.001031</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>-0.056646</td>\n",
" <td>-0.03305</td>\n",
" <td>0.000507</td>\n",
" <td>0.124750</td>\n",
" <td>0.060500</td>\n",
" <td>-0.000496</td>\n",
" <td>-0.181396</td>\n",
" <td>-0.09355</td>\n",
" <td>0.000011</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>0.103187</td>\n",
" <td>0.064784</td>\n",
" <td>-0.000909</td>\n",
" <td>0.231000</td>\n",
" <td>-0.062500</td>\n",
" <td>0.000012</td>\n",
" <td>-0.127813</td>\n",
" <td>0.127284</td>\n",
" <td>-0.000897</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>0.147187</td>\n",
" <td>0.336784</td>\n",
" <td>-0.000679</td>\n",
" <td>-0.000250</td>\n",
" <td>-0.018750</td>\n",
" <td>-0.001090</td>\n",
" <td>0.147437</td>\n",
" <td>0.355534</td>\n",
" <td>-0.001769</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>0.05152</td>\n",
" <td>-0.00255</td>\n",
" <td>0.000032</td>\n",
" <td>0.129500</td>\n",
" <td>-0.053500</td>\n",
" <td>-0.000670</td>\n",
" <td>-0.07798</td>\n",
" <td>0.05095</td>\n",
" <td>-0.000638</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>-0.164646</td>\n",
" <td>0.18295</td>\n",
" <td>-0.000627</td>\n",
" <td>0.019000</td>\n",
" <td>-0.213250</td>\n",
" <td>-0.000016</td>\n",
" <td>-0.183646</td>\n",
" <td>0.3962</td>\n",
" <td>-0.000643</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>-0.172313</td>\n",
" <td>-0.137216</td>\n",
" <td>0.001899</td>\n",
" <td>0.224750</td>\n",
" <td>-0.177500</td>\n",
" <td>-0.002572</td>\n",
" <td>-0.397063</td>\n",
" <td>0.040284</td>\n",
" <td>-0.000673</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>-0.075313</td>\n",
" <td>-0.255716</td>\n",
" <td>0.002427</td>\n",
" <td>0.144250</td>\n",
" <td>-0.016750</td>\n",
" <td>-0.000048</td>\n",
" <td>-0.219563</td>\n",
" <td>-0.238966</td>\n",
" <td>0.002379</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>-0.18048</td>\n",
" <td>0.14945</td>\n",
" <td>0.001025</td>\n",
" <td>0.040500</td>\n",
" <td>-0.194250</td>\n",
" <td>0.000040</td>\n",
" <td>-0.22098</td>\n",
" <td>0.3437</td>\n",
" <td>0.001064</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>-0.17848</td>\n",
" <td>-0.189883</td>\n",
" <td>0.000494</td>\n",
" <td>-0.054500</td>\n",
" <td>0.042750</td>\n",
" <td>0.001016</td>\n",
" <td>-0.12398</td>\n",
" <td>-0.232633</td>\n",
" <td>0.001511</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>-0.097146</td>\n",
" <td>-0.15105</td>\n",
" <td>-0.000001</td>\n",
" <td>-0.094500</td>\n",
" <td>-0.007000</td>\n",
" <td>-0.000203</td>\n",
" <td>-0.002646</td>\n",
" <td>-0.14405</td>\n",
" <td>-0.000204</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>-0.023146</td>\n",
" <td>-0.052883</td>\n",
" <td>0.000556</td>\n",
" <td>0.062750</td>\n",
" <td>0.132500</td>\n",
" <td>-0.000855</td>\n",
" <td>-0.085896</td>\n",
" <td>-0.185383</td>\n",
" <td>-0.000299</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>0.017187</td>\n",
" <td>0.150617</td>\n",
" <td>-0.000582</td>\n",
" <td>0.066750</td>\n",
" <td>0.150250</td>\n",
" <td>-0.000204</td>\n",
" <td>-0.049563</td>\n",
" <td>0.000367</td>\n",
" <td>-0.000787</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>0.32351</td>\n",
" <td>0.284186</td>\n",
" <td>-0.002588</td>\n",
" <td>0.196750</td>\n",
" <td>0.097750</td>\n",
" <td>0.000700</td>\n",
" <td>0.12676</td>\n",
" <td>0.186436</td>\n",
" <td>-0.001889</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>-0.07248</td>\n",
" <td>-0.071216</td>\n",
" <td>0.00207</td>\n",
" <td>0.245500</td>\n",
" <td>-0.326250</td>\n",
" <td>-0.001263</td>\n",
" <td>-0.31798</td>\n",
" <td>0.255034</td>\n",
" <td>0.000808</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>-0.100813</td>\n",
" <td>-0.09355</td>\n",
" <td>-0.000304</td>\n",
" <td>0.060250</td>\n",
" <td>-0.330000</td>\n",
" <td>-0.000012</td>\n",
" <td>-0.161063</td>\n",
" <td>0.23645</td>\n",
" <td>-0.000316</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>-0.08448</td>\n",
" <td>-0.156383</td>\n",
" <td>0.00119</td>\n",
" <td>0.026000</td>\n",
" <td>-0.221750</td>\n",
" <td>-0.001905</td>\n",
" <td>-0.11048</td>\n",
" <td>0.065367</td>\n",
" <td>-0.000716</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>-0.191813</td>\n",
" <td>-0.245216</td>\n",
" <td>0.002553</td>\n",
" <td>0.175750</td>\n",
" <td>-0.123000</td>\n",
" <td>0.000769</td>\n",
" <td>-0.367563</td>\n",
" <td>-0.122216</td>\n",
" <td>0.003322</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>-0.24648</td>\n",
" <td>-0.300216</td>\n",
" <td>0.00291</td>\n",
" <td>0.147000</td>\n",
" <td>-0.221000</td>\n",
" <td>-0.000364</td>\n",
" <td>-0.39348</td>\n",
" <td>-0.079216</td>\n",
" <td>0.002546</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>-0.186146</td>\n",
" <td>-0.325383</td>\n",
" <td>0.001983</td>\n",
" <td>0.183500</td>\n",
" <td>-0.195250</td>\n",
" <td>-0.000303</td>\n",
" <td>-0.369646</td>\n",
" <td>-0.130133</td>\n",
" <td>0.00168</td>\n",
" </tr>\n",
" <tr>\n",
" <th>31</th>\n",
" <td>-0.125813</td>\n",
" <td>-0.35055</td>\n",
" <td>0.001057</td>\n",
" <td>0.220000</td>\n",
" <td>-0.169500</td>\n",
" <td>-0.000242</td>\n",
" <td>-0.345813</td>\n",
" <td>-0.18105</td>\n",
" <td>0.000815</td>\n",
" </tr>\n",
" <tr>\n",
" <th>32</th>\n",
" <td>-0.17648</td>\n",
" <td>-0.10005</td>\n",
" <td>0.001247</td>\n",
" <td>0.027250</td>\n",
" <td>0.075750</td>\n",
" <td>-0.000563</td>\n",
" <td>-0.20373</td>\n",
" <td>-0.1758</td>\n",
" <td>0.000684</td>\n",
" </tr>\n",
" <tr>\n",
" <th>33</th>\n",
" <td>0.04802</td>\n",
" <td>0.061784</td>\n",
" <td>-0.001063</td>\n",
" <td>0.025250</td>\n",
" <td>0.029250</td>\n",
" <td>-0.000027</td>\n",
" <td>0.02277</td>\n",
" <td>0.032534</td>\n",
" <td>-0.001091</td>\n",
" </tr>\n",
" <tr>\n",
" <th>34</th>\n",
" <td>0.176187</td>\n",
" <td>0.46945</td>\n",
" <td>-0.001825</td>\n",
" <td>-0.025500</td>\n",
" <td>-0.032000</td>\n",
" <td>0.000352</td>\n",
" <td>0.201687</td>\n",
" <td>0.50145</td>\n",
" <td>-0.001473</td>\n",
" </tr>\n",
" <tr>\n",
" <th>35</th>\n",
" <td>0.10652</td>\n",
" <td>-0.357883</td>\n",
" <td>0.001487</td>\n",
" <td>0.103000</td>\n",
" <td>-0.126250</td>\n",
" <td>0.000430</td>\n",
" <td>0.00352</td>\n",
" <td>-0.231633</td>\n",
" <td>0.001917</td>\n",
" </tr>\n",
" <tr>\n",
" <th>36</th>\n",
" <td>-0.045646</td>\n",
" <td>0.475617</td>\n",
" <td>-0.002123</td>\n",
" <td>0.065250</td>\n",
" <td>0.048750</td>\n",
" <td>0.001416</td>\n",
" <td>-0.110896</td>\n",
" <td>0.426867</td>\n",
" <td>-0.000707</td>\n",
" </tr>\n",
" <tr>\n",
" <th>37</th>\n",
" <td>-0.101646</td>\n",
" <td>-0.309216</td>\n",
" <td>0.001077</td>\n",
" <td>0.056750</td>\n",
" <td>-0.194750</td>\n",
" <td>-0.001784</td>\n",
" <td>-0.158396</td>\n",
" <td>-0.114466</td>\n",
" <td>-0.000707</td>\n",
" </tr>\n",
" <tr>\n",
" <th>38</th>\n",
" <td>-0.084313</td>\n",
" <td>-0.13755</td>\n",
" <td>0.000914</td>\n",
" <td>0.078500</td>\n",
" <td>-0.040250</td>\n",
" <td>-0.000889</td>\n",
" <td>-0.162813</td>\n",
" <td>-0.0973</td>\n",
" <td>0.000025</td>\n",
" </tr>\n",
" <tr>\n",
" <th>39</th>\n",
" <td>-0.053146</td>\n",
" <td>-0.078883</td>\n",
" <td>0.003345</td>\n",
" <td>0.026500</td>\n",
" <td>-0.186250</td>\n",
" <td>0.000466</td>\n",
" <td>-0.079646</td>\n",
" <td>0.107367</td>\n",
" <td>0.003811</td>\n",
" </tr>\n",
" <tr>\n",
" <th>40</th>\n",
" <td>-0.04448</td>\n",
" <td>-0.42605</td>\n",
" <td>0.001397</td>\n",
" <td>0.186750</td>\n",
" <td>-0.168500</td>\n",
" <td>0.000754</td>\n",
" <td>-0.23123</td>\n",
" <td>-0.25755</td>\n",
" <td>0.002151</td>\n",
" </tr>\n",
" <tr>\n",
" <th>41</th>\n",
" <td>0.01552</td>\n",
" <td>-0.056716</td>\n",
" <td>-0.000278</td>\n",
" <td>0.156250</td>\n",
" <td>0.204250</td>\n",
" <td>0.002299</td>\n",
" <td>-0.14073</td>\n",
" <td>-0.260966</td>\n",
" <td>0.00202</td>\n",
" </tr>\n",
" <tr>\n",
" <th>42</th>\n",
" <td>-0.004396</td>\n",
" <td>-0.0678</td>\n",
" <td>0.000554</td>\n",
" <td>0.135125</td>\n",
" <td>0.146750</td>\n",
" <td>0.001206</td>\n",
" <td>-0.139521</td>\n",
" <td>-0.21455</td>\n",
" <td>0.00176</td>\n",
" </tr>\n",
" <tr>\n",
" <th>43</th>\n",
" <td>-0.024313</td>\n",
" <td>-0.078883</td>\n",
" <td>0.001386</td>\n",
" <td>0.114000</td>\n",
" <td>0.089250</td>\n",
" <td>0.000114</td>\n",
" <td>-0.138313</td>\n",
" <td>-0.168133</td>\n",
" <td>0.0015</td>\n",
" </tr>\n",
" <tr>\n",
" <th>44</th>\n",
" <td>0.017354</td>\n",
" <td>-0.01505</td>\n",
" <td>-0.001466</td>\n",
" <td>0.135000</td>\n",
" <td>-0.145000</td>\n",
" <td>0.001351</td>\n",
" <td>-0.117646</td>\n",
" <td>0.12995</td>\n",
" <td>-0.000115</td>\n",
" </tr>\n",
" <tr>\n",
" <th>45</th>\n",
" <td>0.16802</td>\n",
" <td>0.352117</td>\n",
" <td>-0.001565</td>\n",
" <td>0.060500</td>\n",
" <td>-0.166000</td>\n",
" <td>0.001076</td>\n",
" <td>0.10752</td>\n",
" <td>0.518117</td>\n",
" <td>-0.000488</td>\n",
" </tr>\n",
" <tr>\n",
" <th>46</th>\n",
" <td>0.171187</td>\n",
" <td>0.08045</td>\n",
" <td>-0.002168</td>\n",
" <td>0.219500</td>\n",
" <td>-0.098000</td>\n",
" <td>0.001441</td>\n",
" <td>-0.048313</td>\n",
" <td>0.17845</td>\n",
" <td>-0.000727</td>\n",
" </tr>\n",
" <tr>\n",
" <th>47</th>\n",
" <td>-0.09698</td>\n",
" <td>0.03745</td>\n",
" <td>-0.001379</td>\n",
" <td>-0.140250</td>\n",
" <td>-0.373750</td>\n",
" <td>0.000735</td>\n",
" <td>0.04327</td>\n",
" <td>0.4112</td>\n",
" <td>-0.000644</td>\n",
" </tr>\n",
" <tr>\n",
" <th>48</th>\n",
" <td>0.021187</td>\n",
" <td>-0.09805</td>\n",
" <td>-0.000235</td>\n",
" <td>0.114500</td>\n",
" <td>-0.342000</td>\n",
" <td>-0.000636</td>\n",
" <td>-0.093313</td>\n",
" <td>0.24395</td>\n",
" <td>-0.000871</td>\n",
" </tr>\n",
" <tr>\n",
" <th>49</th>\n",
" <td>-0.133313</td>\n",
" <td>-0.212216</td>\n",
" <td>0.000334</td>\n",
" <td>0.101750</td>\n",
" <td>-0.103750</td>\n",
" <td>0.002060</td>\n",
" <td>-0.235063</td>\n",
" <td>-0.108466</td>\n",
" <td>0.002393</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50</th>\n",
" <td>-0.036146</td>\n",
" <td>-0.2518</td>\n",
" <td>0.000955</td>\n",
" <td>0.107875</td>\n",
" <td>-0.036000</td>\n",
" <td>0.001074</td>\n",
" <td>-0.144021</td>\n",
" <td>-0.2158</td>\n",
" <td>0.002029</td>\n",
" </tr>\n",
" <tr>\n",
" <th>51</th>\n",
" <td>0.06102</td>\n",
" <td>-0.291383</td>\n",
" <td>0.001576</td>\n",
" <td>0.114000</td>\n",
" <td>0.031750</td>\n",
" <td>0.000088</td>\n",
" <td>-0.05298</td>\n",
" <td>-0.323133</td>\n",
" <td>0.001664</td>\n",
" </tr>\n",
" <tr>\n",
" <th>52</th>\n",
" <td>0.215854</td>\n",
" <td>0.18295</td>\n",
" <td>0.000214</td>\n",
" <td>0.338750</td>\n",
" <td>0.304250</td>\n",
" <td>0.000048</td>\n",
" <td>-0.122896</td>\n",
" <td>-0.1213</td>\n",
" <td>0.000262</td>\n",
" </tr>\n",
" <tr>\n",
" <th>53</th>\n",
" <td>-0.11098</td>\n",
" <td>-0.073883</td>\n",
" <td>0.001053</td>\n",
" <td>0.000750</td>\n",
" <td>-0.020500</td>\n",
" <td>0.000696</td>\n",
" <td>-0.11173</td>\n",
" <td>-0.053383</td>\n",
" <td>0.001749</td>\n",
" </tr>\n",
" <tr>\n",
" <th>54</th>\n",
" <td>0.00027</td>\n",
" <td>-0.04005</td>\n",
" <td>0.000003</td>\n",
" <td>0.022625</td>\n",
" <td>0.020625</td>\n",
" <td>0.000900</td>\n",
" <td>-0.022355</td>\n",
" <td>-0.060675</td>\n",
" <td>0.000903</td>\n",
" </tr>\n",
" <tr>\n",
" <th>55</th>\n",
" <td>0.11152</td>\n",
" <td>-0.006216</td>\n",
" <td>-0.001048</td>\n",
" <td>0.044500</td>\n",
" <td>0.061750</td>\n",
" <td>0.001104</td>\n",
" <td>0.06702</td>\n",
" <td>-0.067966</td>\n",
" <td>0.000056</td>\n",
" </tr>\n",
" <tr>\n",
" <th>56</th>\n",
" <td>0.19302</td>\n",
" <td>0.21295</td>\n",
" <td>-0.00216</td>\n",
" <td>0.172500</td>\n",
" <td>-0.016500</td>\n",
" <td>-0.000131</td>\n",
" <td>0.02052</td>\n",
" <td>0.22945</td>\n",
" <td>-0.00229</td>\n",
" </tr>\n",
" <tr>\n",
" <th>57</th>\n",
" <td>0.273187</td>\n",
" <td>-0.013883</td>\n",
" <td>-0.002739</td>\n",
" <td>0.048250</td>\n",
" <td>-0.181000</td>\n",
" <td>0.001105</td>\n",
" <td>0.224937</td>\n",
" <td>0.167117</td>\n",
" <td>-0.001635</td>\n",
" </tr>\n",
" <tr>\n",
" <th>58</th>\n",
" <td>-0.028146</td>\n",
" <td>-0.246383</td>\n",
" <td>0.001968</td>\n",
" <td>0.416750</td>\n",
" <td>-0.373750</td>\n",
" <td>-0.001586</td>\n",
" <td>-0.444896</td>\n",
" <td>0.127367</td>\n",
" <td>0.000382</td>\n",
" </tr>\n",
" <tr>\n",
" <th>59</th>\n",
" <td>-0.209813</td>\n",
" <td>0.088284</td>\n",
" <td>-0.002877</td>\n",
" <td>-0.198000</td>\n",
" <td>-0.267000</td>\n",
" <td>0.000579</td>\n",
" <td>-0.011813</td>\n",
" <td>0.355284</td>\n",
" <td>-0.002298</td>\n",
" </tr>\n",
" <tr>\n",
" <th>60</th>\n",
" <td>-0.174757</td>\n",
" <td>-0.023383</td>\n",
" <td>-0.001219</td>\n",
" <td>-0.078000</td>\n",
" <td>-0.183833</td>\n",
" <td>0.000241</td>\n",
" <td>-0.096757</td>\n",
" <td>0.16045</td>\n",
" <td>-0.000978</td>\n",
" </tr>\n",
" <tr>\n",
" <th>61</th>\n",
" <td>-0.139702</td>\n",
" <td>-0.13505</td>\n",
" <td>0.00044</td>\n",
" <td>0.042000</td>\n",
" <td>-0.100667</td>\n",
" <td>-0.000097</td>\n",
" <td>-0.181702</td>\n",
" <td>-0.034383</td>\n",
" <td>0.000343</td>\n",
" </tr>\n",
" <tr>\n",
" <th>62</th>\n",
" <td>-0.104646</td>\n",
" <td>-0.246716</td>\n",
" <td>0.002098</td>\n",
" <td>0.162000</td>\n",
" <td>-0.017500</td>\n",
" <td>-0.000435</td>\n",
" <td>-0.266646</td>\n",
" <td>-0.229216</td>\n",
" <td>0.001663</td>\n",
" </tr>\n",
" <tr>\n",
" <th>63</th>\n",
" <td>-0.205646</td>\n",
" <td>-0.28555</td>\n",
" <td>0.001062</td>\n",
" <td>-0.054250</td>\n",
" <td>0.026500</td>\n",
" <td>0.000970</td>\n",
" <td>-0.151396</td>\n",
" <td>-0.31205</td>\n",
" <td>0.002032</td>\n",
" </tr>\n",
" <tr>\n",
" <th>64</th>\n",
" <td>-0.12598</td>\n",
" <td>-0.15505</td>\n",
" <td>0.002259</td>\n",
" <td>-0.075250</td>\n",
" <td>-0.011000</td>\n",
" <td>-0.001122</td>\n",
" <td>-0.05073</td>\n",
" <td>-0.14405</td>\n",
" <td>0.001137</td>\n",
" </tr>\n",
" <tr>\n",
" <th>65</th>\n",
" <td>-0.14348</td>\n",
" <td>-0.03305</td>\n",
" <td>0.001479</td>\n",
" <td>-0.066500</td>\n",
" <td>0.042750</td>\n",
" <td>0.000656</td>\n",
" <td>-0.07698</td>\n",
" <td>-0.0758</td>\n",
" <td>0.002136</td>\n",
" </tr>\n",
" <tr>\n",
" <th>66</th>\n",
" <td>0.171354</td>\n",
" <td>-0.021883</td>\n",
" <td>-0.0015</td>\n",
" <td>0.151500</td>\n",
" <td>-0.041250</td>\n",
" <td>0.001182</td>\n",
" <td>0.019854</td>\n",
" <td>0.019367</td>\n",
" <td>-0.000318</td>\n",
" </tr>\n",
" <tr>\n",
" <th>67</th>\n",
" <td>0.115437</td>\n",
" <td>0.048284</td>\n",
" <td>-0.001291</td>\n",
" <td>0.144750</td>\n",
" <td>-0.099250</td>\n",
" <td>0.001174</td>\n",
" <td>-0.029313</td>\n",
" <td>0.147534</td>\n",
" <td>-0.000117</td>\n",
" </tr>\n",
" <tr>\n",
" <th>68</th>\n",
" <td>0.05952</td>\n",
" <td>0.11845</td>\n",
" <td>-0.001083</td>\n",
" <td>0.138000</td>\n",
" <td>-0.157250</td>\n",
" <td>0.001167</td>\n",
" <td>-0.07848</td>\n",
" <td>0.2757</td>\n",
" <td>0.000084</td>\n",
" </tr>\n",
" <tr>\n",
" <th>69</th>\n",
" <td>-0.092146</td>\n",
" <td>-0.126216</td>\n",
" <td>-0.000788</td>\n",
" <td>0.277250</td>\n",
" <td>-0.138750</td>\n",
" <td>0.001707</td>\n",
" <td>-0.369396</td>\n",
" <td>0.012534</td>\n",
" <td>0.000919</td>\n",
" </tr>\n",
" <tr>\n",
" <th>70</th>\n",
" <td>-0.085313</td>\n",
" <td>-0.106383</td>\n",
" <td>-0.000915</td>\n",
" <td>0.203500</td>\n",
" <td>0.130500</td>\n",
" <td>0.003755</td>\n",
" <td>-0.288813</td>\n",
" <td>-0.236883</td>\n",
" <td>0.00284</td>\n",
" </tr>\n",
" <tr>\n",
" <th>71</th>\n",
" <td>0.079354</td>\n",
" <td>-0.09755</td>\n",
" <td>-0.000379</td>\n",
" <td>0.141250</td>\n",
" <td>0.126500</td>\n",
" <td>0.001785</td>\n",
" <td>-0.061896</td>\n",
" <td>-0.22405</td>\n",
" <td>0.001407</td>\n",
" </tr>\n",
" <tr>\n",
" <th>72</th>\n",
" <td>0.071354</td>\n",
" <td>-0.119383</td>\n",
" <td>-0.000533</td>\n",
" <td>0.171500</td>\n",
" <td>0.063000</td>\n",
" <td>0.002567</td>\n",
" <td>-0.100146</td>\n",
" <td>-0.182383</td>\n",
" <td>0.002034</td>\n",
" </tr>\n",
" <tr>\n",
" <th>73</th>\n",
" <td>0.063854</td>\n",
" <td>0.086617</td>\n",
" <td>-0.000797</td>\n",
" <td>0.099000</td>\n",
" <td>0.109500</td>\n",
" <td>0.001905</td>\n",
" <td>-0.035146</td>\n",
" <td>-0.022883</td>\n",
" <td>0.001108</td>\n",
" </tr>\n",
" <tr>\n",
" <th>74</th>\n",
" <td>0.01302</td>\n",
" <td>0.07795</td>\n",
" <td>0.001178</td>\n",
" <td>0.179750</td>\n",
" <td>0.101500</td>\n",
" <td>0.001261</td>\n",
" <td>-0.16673</td>\n",
" <td>-0.02355</td>\n",
" <td>0.002439</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75</th>\n",
" <td>0.046187</td>\n",
" <td>0.084284</td>\n",
" <td>-0.001103</td>\n",
" <td>0.080000</td>\n",
" <td>0.081000</td>\n",
" <td>0.000765</td>\n",
" <td>-0.033813</td>\n",
" <td>0.003284</td>\n",
" <td>-0.000338</td>\n",
" </tr>\n",
" <tr>\n",
" <th>76</th>\n",
" <td>0.185854</td>\n",
" <td>0.09695</td>\n",
" <td>-0.002941</td>\n",
" <td>0.175500</td>\n",
" <td>-0.099500</td>\n",
" <td>0.000115</td>\n",
" <td>0.010354</td>\n",
" <td>0.19645</td>\n",
" <td>-0.002826</td>\n",
" </tr>\n",
" <tr>\n",
" <th>77</th>\n",
" <td>0.31002</td>\n",
" <td>0.278117</td>\n",
" <td>-0.003508</td>\n",
" <td>0.288250</td>\n",
" <td>0.158250</td>\n",
" <td>0.002115</td>\n",
" <td>0.02177</td>\n",
" <td>0.119867</td>\n",
" <td>-0.001393</td>\n",
" </tr>\n",
" <tr>\n",
" <th>78</th>\n",
" <td>-0.099146</td>\n",
" <td>0.313617</td>\n",
" <td>-0.002889</td>\n",
" <td>-0.298750</td>\n",
" <td>0.405500</td>\n",
" <td>0.000791</td>\n",
" <td>0.199604</td>\n",
" <td>-0.091883</td>\n",
" <td>-0.002099</td>\n",
" </tr>\n",
" <tr>\n",
" <th>79</th>\n",
" <td>0.081354</td>\n",
" <td>0.06045</td>\n",
" <td>-0.000383</td>\n",
" <td>0.271250</td>\n",
" <td>0.085750</td>\n",
" <td>0.000585</td>\n",
" <td>-0.189896</td>\n",
" <td>-0.0253</td>\n",
" <td>0.000202</td>\n",
" </tr>\n",
" <tr>\n",
" <th>80</th>\n",
" <td>-0.037646</td>\n",
" <td>0.06795</td>\n",
" <td>-0.000992</td>\n",
" <td>-0.018750</td>\n",
" <td>0.100250</td>\n",
" <td>0.001441</td>\n",
" <td>-0.018896</td>\n",
" <td>-0.0323</td>\n",
" <td>0.000449</td>\n",
" </tr>\n",
" <tr>\n",
" <th>81</th>\n",
" <td>0.177187</td>\n",
" <td>0.105117</td>\n",
" <td>0.000628</td>\n",
" <td>0.132000</td>\n",
" <td>0.011750</td>\n",
" <td>-0.000029</td>\n",
" <td>0.045187</td>\n",
" <td>0.093367</td>\n",
" <td>0.000598</td>\n",
" </tr>\n",
" <tr>\n",
" <th>82</th>\n",
" <td>0.089854</td>\n",
" <td>0.135117</td>\n",
" <td>-0.00161</td>\n",
" <td>0.107000</td>\n",
" <td>-0.088500</td>\n",
" <td>0.001590</td>\n",
" <td>-0.017146</td>\n",
" <td>0.223617</td>\n",
" <td>-0.000021</td>\n",
" </tr>\n",
" <tr>\n",
" <th>83</th>\n",
" <td>0.27152</td>\n",
" <td>0.35145</td>\n",
" <td>-0.001859</td>\n",
" <td>0.079250</td>\n",
" <td>0.089750</td>\n",
" <td>0.000967</td>\n",
" <td>0.19227</td>\n",
" <td>0.2617</td>\n",
" <td>-0.000891</td>\n",
" </tr>\n",
" <tr>\n",
" <th>84</th>\n",
" <td>0.27152</td>\n",
" <td>0.35145</td>\n",
" <td>-0.001859</td>\n",
" <td>0.079250</td>\n",
" <td>0.089750</td>\n",
" <td>0.000967</td>\n",
" <td>0.19227</td>\n",
" <td>0.2617</td>\n",
" <td>-0.000891</td>\n",
" </tr>\n",
" <tr>\n",
" <th>85</th>\n",
" <td>0.27152</td>\n",
" <td>0.35145</td>\n",
" <td>-0.001859</td>\n",
" <td>0.079250</td>\n",
" <td>0.089750</td>\n",
" <td>0.000967</td>\n",
" <td>0.19227</td>\n",
" <td>0.2617</td>\n",
" <td>-0.000891</td>\n",
" </tr>\n",
" <tr>\n",
" <th>86</th>\n",
" <td>0.27152</td>\n",
" <td>0.35145</td>\n",
" <td>-0.001859</td>\n",
" <td>0.079250</td>\n",
" <td>0.089750</td>\n",
" <td>0.000967</td>\n",
" <td>0.19227</td>\n",
" <td>0.2617</td>\n",
" <td>-0.000891</td>\n",
" </tr>\n",
" <tr>\n",
" <th>87</th>\n",
" <td>0.27152</td>\n",
" <td>0.35145</td>\n",
" <td>-0.001859</td>\n",
" <td>0.079250</td>\n",
" <td>0.089750</td>\n",
" <td>0.000967</td>\n",
" <td>0.19227</td>\n",
" <td>0.2617</td>\n",
" <td>-0.000891</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 1 2 3 对位MarkX 对位MarkY Angle Calc-X \\\n",
"1 0.29802 0.31845 0.001817 -0.176250 0.020250 -0.002813 0.47427 \n",
"2 0.04352 0.263284 0.000099 -0.050250 0.064750 -0.000655 0.09377 \n",
"3 0.087187 0.223534 0.000617 0.095750 0.038125 -0.001255 -0.008563 \n",
"4 0.130854 0.183784 0.001135 0.241750 0.011500 -0.001855 -0.110896 \n",
"5 -0.122146 0.217117 -0.000801 -0.083250 0.076250 -0.001274 -0.038896 \n",
"6 0.149854 0.221284 0.000566 -0.221500 -0.109750 -0.000794 0.371354 \n",
"7 -0.278646 -0.309216 0.002059 -0.017250 -0.377500 0.000243 -0.261396 \n",
"8 -0.16648 -0.014716 -0.000401 0.095250 -0.090750 0.000639 -0.26173 \n",
"9 -0.044313 0.072617 0.000706 0.181250 0.017250 -0.001388 -0.225563 \n",
"10 -0.00773 0.0212 0.000567 0.254500 0.035000 -0.000392 -0.26223 \n",
"11 0.028854 -0.030216 0.000427 0.327750 0.052750 0.000603 -0.298896 \n",
"12 -0.056646 -0.03305 0.000507 0.124750 0.060500 -0.000496 -0.181396 \n",
"13 0.103187 0.064784 -0.000909 0.231000 -0.062500 0.000012 -0.127813 \n",
"14 0.147187 0.336784 -0.000679 -0.000250 -0.018750 -0.001090 0.147437 \n",
"15 0.05152 -0.00255 0.000032 0.129500 -0.053500 -0.000670 -0.07798 \n",
"16 -0.164646 0.18295 -0.000627 0.019000 -0.213250 -0.000016 -0.183646 \n",
"17 -0.172313 -0.137216 0.001899 0.224750 -0.177500 -0.002572 -0.397063 \n",
"18 -0.075313 -0.255716 0.002427 0.144250 -0.016750 -0.000048 -0.219563 \n",
"19 -0.18048 0.14945 0.001025 0.040500 -0.194250 0.000040 -0.22098 \n",
"20 -0.17848 -0.189883 0.000494 -0.054500 0.042750 0.001016 -0.12398 \n",
"21 -0.097146 -0.15105 -0.000001 -0.094500 -0.007000 -0.000203 -0.002646 \n",
"22 -0.023146 -0.052883 0.000556 0.062750 0.132500 -0.000855 -0.085896 \n",
"23 0.017187 0.150617 -0.000582 0.066750 0.150250 -0.000204 -0.049563 \n",
"24 0.32351 0.284186 -0.002588 0.196750 0.097750 0.000700 0.12676 \n",
"25 -0.07248 -0.071216 0.00207 0.245500 -0.326250 -0.001263 -0.31798 \n",
"26 -0.100813 -0.09355 -0.000304 0.060250 -0.330000 -0.000012 -0.161063 \n",
"27 -0.08448 -0.156383 0.00119 0.026000 -0.221750 -0.001905 -0.11048 \n",
"28 -0.191813 -0.245216 0.002553 0.175750 -0.123000 0.000769 -0.367563 \n",
"29 -0.24648 -0.300216 0.00291 0.147000 -0.221000 -0.000364 -0.39348 \n",
"30 -0.186146 -0.325383 0.001983 0.183500 -0.195250 -0.000303 -0.369646 \n",
"31 -0.125813 -0.35055 0.001057 0.220000 -0.169500 -0.000242 -0.345813 \n",
"32 -0.17648 -0.10005 0.001247 0.027250 0.075750 -0.000563 -0.20373 \n",
"33 0.04802 0.061784 -0.001063 0.025250 0.029250 -0.000027 0.02277 \n",
"34 0.176187 0.46945 -0.001825 -0.025500 -0.032000 0.000352 0.201687 \n",
"35 0.10652 -0.357883 0.001487 0.103000 -0.126250 0.000430 0.00352 \n",
"36 -0.045646 0.475617 -0.002123 0.065250 0.048750 0.001416 -0.110896 \n",
"37 -0.101646 -0.309216 0.001077 0.056750 -0.194750 -0.001784 -0.158396 \n",
"38 -0.084313 -0.13755 0.000914 0.078500 -0.040250 -0.000889 -0.162813 \n",
"39 -0.053146 -0.078883 0.003345 0.026500 -0.186250 0.000466 -0.079646 \n",
"40 -0.04448 -0.42605 0.001397 0.186750 -0.168500 0.000754 -0.23123 \n",
"41 0.01552 -0.056716 -0.000278 0.156250 0.204250 0.002299 -0.14073 \n",
"42 -0.004396 -0.0678 0.000554 0.135125 0.146750 0.001206 -0.139521 \n",
"43 -0.024313 -0.078883 0.001386 0.114000 0.089250 0.000114 -0.138313 \n",
"44 0.017354 -0.01505 -0.001466 0.135000 -0.145000 0.001351 -0.117646 \n",
"45 0.16802 0.352117 -0.001565 0.060500 -0.166000 0.001076 0.10752 \n",
"46 0.171187 0.08045 -0.002168 0.219500 -0.098000 0.001441 -0.048313 \n",
"47 -0.09698 0.03745 -0.001379 -0.140250 -0.373750 0.000735 0.04327 \n",
"48 0.021187 -0.09805 -0.000235 0.114500 -0.342000 -0.000636 -0.093313 \n",
"49 -0.133313 -0.212216 0.000334 0.101750 -0.103750 0.002060 -0.235063 \n",
"50 -0.036146 -0.2518 0.000955 0.107875 -0.036000 0.001074 -0.144021 \n",
"51 0.06102 -0.291383 0.001576 0.114000 0.031750 0.000088 -0.05298 \n",
"52 0.215854 0.18295 0.000214 0.338750 0.304250 0.000048 -0.122896 \n",
"53 -0.11098 -0.073883 0.001053 0.000750 -0.020500 0.000696 -0.11173 \n",
"54 0.00027 -0.04005 0.000003 0.022625 0.020625 0.000900 -0.022355 \n",
"55 0.11152 -0.006216 -0.001048 0.044500 0.061750 0.001104 0.06702 \n",
"56 0.19302 0.21295 -0.00216 0.172500 -0.016500 -0.000131 0.02052 \n",
"57 0.273187 -0.013883 -0.002739 0.048250 -0.181000 0.001105 0.224937 \n",
"58 -0.028146 -0.246383 0.001968 0.416750 -0.373750 -0.001586 -0.444896 \n",
"59 -0.209813 0.088284 -0.002877 -0.198000 -0.267000 0.000579 -0.011813 \n",
"60 -0.174757 -0.023383 -0.001219 -0.078000 -0.183833 0.000241 -0.096757 \n",
"61 -0.139702 -0.13505 0.00044 0.042000 -0.100667 -0.000097 -0.181702 \n",
"62 -0.104646 -0.246716 0.002098 0.162000 -0.017500 -0.000435 -0.266646 \n",
"63 -0.205646 -0.28555 0.001062 -0.054250 0.026500 0.000970 -0.151396 \n",
"64 -0.12598 -0.15505 0.002259 -0.075250 -0.011000 -0.001122 -0.05073 \n",
"65 -0.14348 -0.03305 0.001479 -0.066500 0.042750 0.000656 -0.07698 \n",
"66 0.171354 -0.021883 -0.0015 0.151500 -0.041250 0.001182 0.019854 \n",
"67 0.115437 0.048284 -0.001291 0.144750 -0.099250 0.001174 -0.029313 \n",
"68 0.05952 0.11845 -0.001083 0.138000 -0.157250 0.001167 -0.07848 \n",
"69 -0.092146 -0.126216 -0.000788 0.277250 -0.138750 0.001707 -0.369396 \n",
"70 -0.085313 -0.106383 -0.000915 0.203500 0.130500 0.003755 -0.288813 \n",
"71 0.079354 -0.09755 -0.000379 0.141250 0.126500 0.001785 -0.061896 \n",
"72 0.071354 -0.119383 -0.000533 0.171500 0.063000 0.002567 -0.100146 \n",
"73 0.063854 0.086617 -0.000797 0.099000 0.109500 0.001905 -0.035146 \n",
"74 0.01302 0.07795 0.001178 0.179750 0.101500 0.001261 -0.16673 \n",
"75 0.046187 0.084284 -0.001103 0.080000 0.081000 0.000765 -0.033813 \n",
"76 0.185854 0.09695 -0.002941 0.175500 -0.099500 0.000115 0.010354 \n",
"77 0.31002 0.278117 -0.003508 0.288250 0.158250 0.002115 0.02177 \n",
"78 -0.099146 0.313617 -0.002889 -0.298750 0.405500 0.000791 0.199604 \n",
"79 0.081354 0.06045 -0.000383 0.271250 0.085750 0.000585 -0.189896 \n",
"80 -0.037646 0.06795 -0.000992 -0.018750 0.100250 0.001441 -0.018896 \n",
"81 0.177187 0.105117 0.000628 0.132000 0.011750 -0.000029 0.045187 \n",
"82 0.089854 0.135117 -0.00161 0.107000 -0.088500 0.001590 -0.017146 \n",
"83 0.27152 0.35145 -0.001859 0.079250 0.089750 0.000967 0.19227 \n",
"84 0.27152 0.35145 -0.001859 0.079250 0.089750 0.000967 0.19227 \n",
"85 0.27152 0.35145 -0.001859 0.079250 0.089750 0.000967 0.19227 \n",
"86 0.27152 0.35145 -0.001859 0.079250 0.089750 0.000967 0.19227 \n",
"87 0.27152 0.35145 -0.001859 0.079250 0.089750 0.000967 0.19227 \n",
"\n",
" Calc-Y Calc-Angle \n",
"1 0.2982 -0.000996 \n",
"2 0.198534 -0.000556 \n",
"3 0.185409 -0.000638 \n",
"4 0.172284 -0.00072 \n",
"5 0.140867 -0.002075 \n",
"6 0.331034 -0.000228 \n",
"7 0.068284 0.002302 \n",
"8 0.076034 0.000238 \n",
"9 0.055367 -0.000682 \n",
"10 -0.0138 0.000175 \n",
"11 -0.082966 0.001031 \n",
"12 -0.09355 0.000011 \n",
"13 0.127284 -0.000897 \n",
"14 0.355534 -0.001769 \n",
"15 0.05095 -0.000638 \n",
"16 0.3962 -0.000643 \n",
"17 0.040284 -0.000673 \n",
"18 -0.238966 0.002379 \n",
"19 0.3437 0.001064 \n",
"20 -0.232633 0.001511 \n",
"21 -0.14405 -0.000204 \n",
"22 -0.185383 -0.000299 \n",
"23 0.000367 -0.000787 \n",
"24 0.186436 -0.001889 \n",
"25 0.255034 0.000808 \n",
"26 0.23645 -0.000316 \n",
"27 0.065367 -0.000716 \n",
"28 -0.122216 0.003322 \n",
"29 -0.079216 0.002546 \n",
"30 -0.130133 0.00168 \n",
"31 -0.18105 0.000815 \n",
"32 -0.1758 0.000684 \n",
"33 0.032534 -0.001091 \n",
"34 0.50145 -0.001473 \n",
"35 -0.231633 0.001917 \n",
"36 0.426867 -0.000707 \n",
"37 -0.114466 -0.000707 \n",
"38 -0.0973 0.000025 \n",
"39 0.107367 0.003811 \n",
"40 -0.25755 0.002151 \n",
"41 -0.260966 0.00202 \n",
"42 -0.21455 0.00176 \n",
"43 -0.168133 0.0015 \n",
"44 0.12995 -0.000115 \n",
"45 0.518117 -0.000488 \n",
"46 0.17845 -0.000727 \n",
"47 0.4112 -0.000644 \n",
"48 0.24395 -0.000871 \n",
"49 -0.108466 0.002393 \n",
"50 -0.2158 0.002029 \n",
"51 -0.323133 0.001664 \n",
"52 -0.1213 0.000262 \n",
"53 -0.053383 0.001749 \n",
"54 -0.060675 0.000903 \n",
"55 -0.067966 0.000056 \n",
"56 0.22945 -0.00229 \n",
"57 0.167117 -0.001635 \n",
"58 0.127367 0.000382 \n",
"59 0.355284 -0.002298 \n",
"60 0.16045 -0.000978 \n",
"61 -0.034383 0.000343 \n",
"62 -0.229216 0.001663 \n",
"63 -0.31205 0.002032 \n",
"64 -0.14405 0.001137 \n",
"65 -0.0758 0.002136 \n",
"66 0.019367 -0.000318 \n",
"67 0.147534 -0.000117 \n",
"68 0.2757 0.000084 \n",
"69 0.012534 0.000919 \n",
"70 -0.236883 0.00284 \n",
"71 -0.22405 0.001407 \n",
"72 -0.182383 0.002034 \n",
"73 -0.022883 0.001108 \n",
"74 -0.02355 0.002439 \n",
"75 0.003284 -0.000338 \n",
"76 0.19645 -0.002826 \n",
"77 0.119867 -0.001393 \n",
"78 -0.091883 -0.002099 \n",
"79 -0.0253 0.000202 \n",
"80 -0.0323 0.000449 \n",
"81 0.093367 0.000598 \n",
"82 0.223617 -0.000021 \n",
"83 0.2617 -0.000891 \n",
"84 0.2617 -0.000891 \n",
"85 0.2617 -0.000891 \n",
"86 0.2617 -0.000891 \n",
"87 0.2617 -0.000891 "
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Old_New_DieBC = pd.concat([OldDieBC.iloc[4:,:],DieBC],axis=1)\n",
"# X、Y 是减,角度是加。\n",
"Old_New_DieBC['Calc-X'] = Old_New_DieBC[1] - Old_New_DieBC['对位MarkX']\n",
"Old_New_DieBC['Calc-Y'] = Old_New_DieBC[2] - Old_New_DieBC['对位MarkY']\n",
"Old_New_DieBC['Calc-Angle'] = Old_New_DieBC[3] + Old_New_DieBC['Angle']\n",
"Old_New_DieBC"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "43f1c8ec-6d94-4935-acd3-156dbeec3747",
"metadata": {},
"outputs": [],
"source": [
"# Old_New_DieBC.to_excel(f'{DieType}/{DieType}局部补偿{daytime}.xlsx')"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "4ed8868d-4098-4959-9fcc-b631a5b81cca",
"metadata": {},
"outputs": [],
"source": [
"# pd.DataFrame(AlignMarkY['10.14.3-Die1'].values - BC_Y.mean(axis=1).values).std()*3"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "20e83f4f-eed9-409e-9720-027bdfbd96a5",
"metadata": {},
"outputs": [],
"source": [
"# for i in ['10.14.1-Die1','10.14.2-Die1','10.14.3-Die1']:\n",
" # print(i+\":X\",pd.DataFrame(AlignMarkX[i].values - BC_X.mean(axis=1).values).std()*3)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "d4f89c43-d128-489b-89f0-e35dab1c6c87",
"metadata": {},
"outputs": [],
"source": [
"# for i in ['10.14.1-Die1','10.14.2-Die1','10.14.3-Die1']:\n",
" # print(i+\":Y\",pd.DataFrame(AlignMarkY[i].values - BC_Y.mean(axis=1).values).std()*3)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "fb698448-6d4d-4477-8afd-35430692c8df",
"metadata": {},
"outputs": [],
"source": [
"# DieBC['Top Mark1 X'] = AlX981\n",
"# DieBC['Top Mark1 Y'] = AlY981\n",
"# DieBC['Top Mark2 X'] = AnX981\n",
"# DieBC['Top Mark2 Y'] = AnY981\n",
"# DieBC.to_excel(f'Die1/Die1设备方向偏差9-8-2.xlsx')"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "94ecaf78-98bb-45a4-b66f-d36519a42cd5",
"metadata": {},
"outputs": [],
"source": [
"# num = -1\n",
"# AlX982 = AlignMarkX.iloc[:,num]-AlignMarkX.iloc[:,num].mean()\n",
"# AlX982 = AlX982.fillna(AlX982.interpolate()).values\n",
"\n",
"# AlY982 = AlignMarkY.iloc[:,num]-AlignMarkY.iloc[:,num].mean()\n",
"# AlY982 = AlY982.fillna(AlY982.interpolate()).values\n",
"\n",
"# AnX982 = AngleMarkX.iloc[:,num]-AngleMarkX.iloc[:,num].mean()\n",
"# AnX982 = AnX982.fillna(AnX982.interpolate()).values\n",
"\n",
"# AnY982 = AngleMarkY.iloc[:,num]-AngleMarkY.iloc[:,num].mean()\n",
"# AnY982 = AnY982.fillna(AnY982.interpolate()).values"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "21da49b6-3576-4468-8c86-070e51ac0bce",
"metadata": {},
"outputs": [],
"source": [
"# DieBC['Top Mark1 X'] = AlX982\n",
"# DieBC['Top Mark1 Y'] = AlY982\n",
"# DieBC['Top Mark2 X'] = AnX982\n",
"# DieBC['Top Mark2 Y'] = AnY982\n",
"# DieBC.to_excel(f'Die1/Die1设备方向偏差9-9-1.xlsx')"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "1858da30",
"metadata": {},
"outputs": [],
"source": [
"# num = -1\n",
"# Die3BC['Top Mark1 X'] = AlignMarkX.iloc[:,num].fillna(AlignMarkX.iloc[:,num].interpolate()).values\n",
"# Die3BC['Top Mark1 Y'] = AlignMarkY.iloc[:,num].fillna(AlignMarkY.iloc[:,num].interpolate()).values\n",
"# Die3BC['Top Mark2 X'] = AngleMarkX.iloc[:,num].fillna(AngleMarkX.iloc[:,num].interpolate()).values\n",
"# Die3BC['Top Mark2 Y'] = AngleMarkY.iloc[:,num].fillna(AngleMarkY.iloc[:,num].interpolate()).values"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "30ccc3df-e5ad-430c-8ac8-0dd074d7f682",
"metadata": {},
"outputs": [],
"source": [
"# Die3BC.to_excel(f'Die1/Die1补偿值9-8.xlsx')"
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "6d74cea0",
"metadata": {},
"outputs": [],
"source": [
"# num = -2\n",
"# AlX915 = AlignMarkX.iloc[:,num]-AlignMarkX.iloc[:,num].mean()\n",
"# AlX915 = AlX915.fillna(AlX981.interpolate()).values\n",
"\n",
"# AlY915 = AlignMarkY.iloc[:,num]-AlignMarkY.iloc[:,num].mean()\n",
"# AlY915 = AlY915.fillna(AlY981.interpolate()).values\n",
"\n",
"# Ang915 = Angle.iloc[:,num] - Angle.iloc[:,num],mean()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
"21d8b0ba77b54fbfabcdf5f52b80df1a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {}
},
"2a0670114f11457b80a6ef3ef22a34fc": {
"model_module": "jupyter-matplotlib",
"model_module_version": "^0.11",
"model_name": "ToolbarModel",
"state": {
"_model_module_version": "^0.11",
"_view_module_version": "^0.11",
"collapsed": true,
"layout": "IPY_MODEL_f7658ea254754f89ae1eaaca3822afd1",
"orientation": "vertical",
"toolitems": [
[
"Home",
"Reset original view",
"home",
"home"
],
[
"Back",
"Back to previous view",
"arrow-left",
"back"
],
[
"Forward",
"Forward to next view",
"arrow-right",
"forward"
],
[
"Pan",
"Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect",
"arrows",
"pan"
],
[
"Zoom",
"Zoom to rectangle\nx/y fixes axis",
"square-o",
"zoom"
],
[
"Download",
"Download plot",
"floppy-o",
"save_figure"
]
]
}
},
"2d1533973ff749659dd783abe0db740f": {
"model_module": "jupyter-matplotlib",
"model_module_version": "^0.11",
"model_name": "ToolbarModel",
"state": {
"_model_module_version": "^0.11",
"_view_module_version": "^0.11",
"collapsed": true,
"layout": "IPY_MODEL_b8d4c7781ff5497da21ab97b922bac2f",
"orientation": "vertical",
"toolitems": [
[
"Home",
"Reset original view",
"home",
"home"
],
[
"Back",
"Back to previous view",
"arrow-left",
"back"
],
[
"Forward",
"Forward to next view",
"arrow-right",
"forward"
],
[
"Pan",
"Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect",
"arrows",
"pan"
],
[
"Zoom",
"Zoom to rectangle\nx/y fixes axis",
"square-o",
"zoom"
],
[
"Download",
"Download plot",
"floppy-o",
"save_figure"
]
]
}
},
"30e39652821f45d4b6a059be76bf8b9b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {}
},
"403a3e58c30643c69e94e76f12bc0587": {
"model_module": "jupyter-matplotlib",
"model_module_version": "^0.11",
"model_name": "MPLCanvasModel",
"state": {
"_data_url": "
"_figure_label": "Figure 2",
"_model_module_version": "^0.11",
"_size": [
800,
550
],
"_view_module_version": "^0.11",
"layout": "IPY_MODEL_6bd4aa27ce3d4da78e5e37533a8df70a",
"toolbar": "IPY_MODEL_8a5b8401a4764aa19048fef48718488b",
"toolbar_position": "left"
}
},
"6bd4aa27ce3d4da78e5e37533a8df70a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {}
},
"8a5b8401a4764aa19048fef48718488b": {
"model_module": "jupyter-matplotlib",
"model_module_version": "^0.11",
"model_name": "ToolbarModel",
"state": {
"_model_module_version": "^0.11",
"_view_module_version": "^0.11",
"collapsed": true,
"layout": "IPY_MODEL_30e39652821f45d4b6a059be76bf8b9b",
"orientation": "vertical",
"toolitems": [
[
"Home",
"Reset original view",
"home",
"home"
],
[
"Back",
"Back to previous view",
"arrow-left",
"back"
],
[
"Forward",
"Forward to next view",
"arrow-right",
"forward"
],
[
"Pan",
"Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect",
"arrows",
"pan"
],
[
"Zoom",
"Zoom to rectangle\nx/y fixes axis",
"square-o",
"zoom"
],
[
"Download",
"Download plot",
"floppy-o",
"save_figure"
]
]
}
},
"8de2ee2a201f4e78b83bb73202597800": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {}
},
"b8d4c7781ff5497da21ab97b922bac2f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {}
},
"cc2cbd4941e54dc4ab6e09927cb3f90b": {
"model_module": "jupyter-matplotlib",
"model_module_version": "^0.11",
"model_name": "MPLCanvasModel",
"state": {
"_data_url": "
"_figure_label": "Figure 3",
"_model_module_version": "^0.11",
"_size": [
800,
550
],
"_view_module_version": "^0.11",
"layout": "IPY_MODEL_8de2ee2a201f4e78b83bb73202597800",
"toolbar": "IPY_MODEL_2d1533973ff749659dd783abe0db740f",
"toolbar_position": "left"
}
},
"ee97a7eebb9a425eb0ade6e31817aa89": {
"model_module": "jupyter-matplotlib",
"model_module_version": "^0.11",
"model_name": "MPLCanvasModel",
"state": {
"_data_url": "
"_figure_label": "Figure 1",
"_model_module_version": "^0.11",
"_size": [
800,
550
],
"_view_module_version": "^0.11",
"layout": "IPY_MODEL_21d8b0ba77b54fbfabcdf5f52b80df1a",
"toolbar": "IPY_MODEL_2a0670114f11457b80a6ef3ef22a34fc",
"toolbar_position": "left"
}
},
"f7658ea254754f89ae1eaaca3822afd1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {}
}
},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}